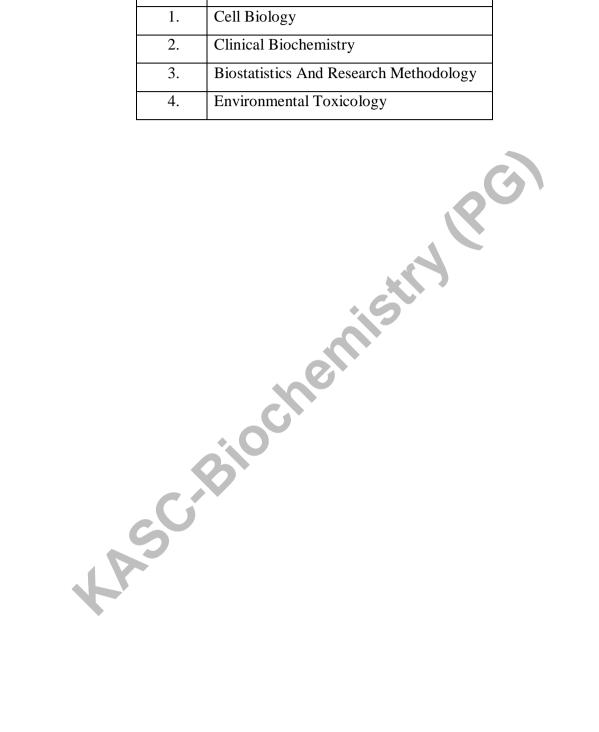
KONGUNADU ARTS AND SCIENCE COLLEGE

(AUTONOMOUS)

[Re-accredited by NAAC with 'A' Grade 3.64 CGPA-(3rd Cycle)]

Coimbatore - 641 029



DEPARTMENT OF BIOCHEMISTRY (PG)

QUESTION BANKS

SUBJECTS

S.No	Name of the Subject
1.	Cell Biology
2.	Clinical Biochemistry
3.	Biostatistics And Research Methodology
4.	Environmental Toxicology

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS),

COIMBATORE - 641029.

DEPARTMENT OF BIOCHEMISTRY (PG AND RESEARCH)

M.Sc BIOCHEMISTRY

QUESTION BANK

ODD SEMESTER (2018-19) C.P.4 CELL BIOLOGY

C.P.4- CELL BIOLOGY

SECTION - A

(Knowledge level K1 Remembering is to be followed in relation to Course Outcomes specified as per bloom's Taxonomy)

Choose the correct answer:

1.	Cerebroside is a					
	a) phospholipid	b) sphingolipid	c) glycolipid	d) aminolipid		
2.	Movement of phospholipids from side to side is known as					
	a) intracellular dif	fusion	b) extracellular diffu	sion		
	c) flip flop		d) lateral diffusion			
3.	The main role of c	carbohydrates in the cell meml	oranes is			
	a) adhesion	b) recognition	c) locomotion	d) reception		
4.	Which protein on t	he plasma membrane of RBC	malarial parasite uses	as a receptor to enter		
	into the cell?					
	a) Band 3 proteins	b) glycophorins	c) spectrin	d) ankyrin		
5.	Which of the follow	wing functional processes resu	ults from the presence	of protein within		
	the plasma membrane?					
	a) enzymatic activ	ity	b) signal transduction	n		
	c) intercellular join	ning	d) all of the above			
6.	Lipid bilayer is					
	a) hydrophilic		b) hydrophobic			
	c) hydrophilic and	hydrophobic	d) depends upon the	surrounding medium		
7.	The distribution of	intrinsic proteins in the cell n	nembrane is			
	a) symmetric	b) asymmetric	c) random	d) uniform		
8.	Na ⁺ glucose transp	orter is an example of				
	a) symport	b) antiport	c) osmosis	d) active transport		
9.	Carrier protein car	n				
	a) Transport only	one substance	b) Transport more th	an one substance		
	c) Exchange one s	ubstance to another	d) Perform all of thes	se functions		
1(). Glycosphingolipi	ds are a combination of				
	a) Ceramide with	one or more sugar residues	b) Glycerol with gala	nctose		

c) Sphingosine with galactose			d) Sphingosine with phosphoric acid		
11. Th	ne importance of phosp	holipids as constituent	of cell membrane is because they possess		
a) l	Fatty acids		b) Both polar and non	polar groups	
c) (Glycerol		d) Phosphoric acid		
12. Ce	ell's potential is maintai	ned by			
a)	Mitochondria	b) nucleus	c) ribosomes	d) cell membrane	
13. Pr	oteins that completely	span lipid bilayer are c	alled as		
a)	extrinsic proteins		b) intrinsic proteins		
c)	fibrous proteins		d) Peripheral proteins		
14. Dı	ue to their amphiphilic	characteristics, phosph	olipids form		
a)	lipid layer		b) lipid bilayer		
c)	lipid trilayer		d) lipid tetralayer		
15. Pl	asma membrane is				
a) always permeable		b) non permeable		
c) selectively permeable		d) Impermeable		
16. Tr	ans bilayer diffusion is	also known as			
a) intracellular diffusion		b) extracellular diffus	ion	
c) flip flop diffusion		d) lateral diffusion		
17. Fl	uid mosaic model was j	presented in			
a)	1980	b) 1978	c) 1972	d) 1973	
18. Re	eceptor site of cell is				
a) Glycolipids		b) glycoproteins		
c) both A and B		d) Carbohydrates sole	ely	
19. A	steroid which decrease	s membrane fluidity is			
a)	Cholesterol	b) cholic acid	c) Estradiol	d) progesterone	
20. Th	ne carbohydrate content	t of plasma membrane	in eukaryotes is		
a) 2	2-10% by weight		b) 20-30% by weight		
c) :	50 -60 % by weight		d) 60 -80 % by weigh	t	
21. E	ngulfing of bacteria by	white blood cells is ca	lled as		
a)	Phagocytosis	b) Pinocytosis	c) Exocytosis	d) Endocytosis	

22.	. Clath	rin coated pits are	associated with		
	a) phag	gocytosis		b) pinocytosis	
	c) rece	ptor mediated endo	cytosis	d) exocytosis	
23.	. An ex	xample for active tr	ansport is		
	a) Ca ²⁺	ATPase	b) Na ⁺ K ⁺ ATPase	c) H ⁺ K ⁺ ATPase	d) all the above
24	. Bulk	uptake of liquid is	an example of		
	a) phag	gocytosis	b) pinocytosis	c) exocytosis	d) endocytosis
25	. Any	favorable moveme	nt of solute across men	nbrane is called	
	a) ac	tive transport		b) passive transport	
	c) solu	ute transport		d) solvent transport	
26	. The p	rincipal intracellula	r cation is		
	a) Na	a^{+}	b) Ca ²⁺	c) K ⁺	d) Cl ⁻
27.	. Solute	es enter a cell when	the solution surroundi	ng that cell is	
	a) H	ypertonic	b) weak	c) concentrated	d) hypotonic
28	. The m	novement of molecu	ales into a cell through	transport proteins in th	ne cell membrane is a
	type o	f			
	a) Os	smosis		b) energy expenditure	
	c) faci	ilitated diffusion		d) selective transport	
29.	. The co	ellular organelles ca	alled "suicide bags" are		
	a) Lys	sosomes		b) Ribosomes	
	c) Nuc	cleolus		d) Golgi's bodies	
30.	From	the biological view	point, solutions can be	grouped into	
	a) Isot	tonic solution		b) Hypotonic solution	ns
	c) Hyj	pertonic solution		d) All of these	
31.	The d	igestive enzymes o	f cellular compounds a	re confined to	
	a) Lys	sosomes		b) Ribosomes	
	c) Per	oxisomes		d) Polysomes	
32	. If con	centration of solute	is same inside as well	as outside cell than it i	is known as
	a) hyp	pertonic solution		b) isotonic solution	
	c) hyp	otonic solution		d) concentrated soluti	on

33.	33. Energy required for passive transport is						
	a)	5 Kcal	b) 1	0 Kcal	c) 0 Kcal	d) infinite	
34.	4. Type of transport which always involves a protein is						
	a)	passive transp	ort		b) active transport		
	c)	lateral diffusion	1		d) flip flop		
35.	. A'	TP hydrolysis is	coupled in				
	a)	primary active	transport		b) secondary active to	ransport	
	c)	tertiary active to	ransport		d) none of above		
36.	. If	3 Na ⁺ ions pum	ped out of c	ell and $2 K^+$ pump	ed into cell than numb	per of ATP molecules	
	hy	drolysed are					
	a)	1	b) 2	2	c) 4	d) 3	
37.	. Bı	ulk transport of	large quanti	ties of materials in	nto cell is referred as		
	a) Active transport		b) Diffusion				
	c)	Bulk Transport			d) Endocytosis		
38.	. Sc	odium-potassiun	$n (NA^+ - K^+)$	pump is a type of			
	a)	Carrier proteir	n b) E	Enzyme	c) Osmosis	d) Catalyst	
39.	. W	hich of the follo	owing proces	ss require membra	nne proteins?		
	a)	Phagocytosis		. 0	b) endocytosis		
	c)	receptor mediat	ed endocyto	osis	d) exocytosis		
40.	. W	hich of the follo	owing is an e	example of a prim	ary active transport?		
	a)	Cl HCO3- ex	change		b) Na+ K+ ATPase		
	c)	Na+ - H+ excha	ange		d) Na+-Ca2+ exchan	ge	
41.	. S	ecretory protein	s are synthe	sized by			
	a) :	free ribosome			b) RER		
	c) 1	ribosomes on nu	ıclear memb	orane	d) all the above		
42.	. P	roteins tagged w	vith mannos	e-6-phosphate are	transported to		
	a)	nucleus	b) lysosom	es	c) mitochondria	d) golgi apparatus	
43.	.W	hich of the follo	wing organe	elle is called as the	e 'sorting centre of the	cell'?	
	a)	RER	b) SER		c) golgi apparatus	d) nucleus	
44.	. F	unction of golgi	apparatus i	n animal cells incl	ude		
	a) Sorting and packaging b) exocytosis of melanin granules						

b) exocytosis of thyroxine hormone	d) all of these					
45. Proteins directed to which of the following org	ganelles are synthesized by ribosomes attached					
to the rough endoplasmic reticulum?	to the rough endoplasmic reticulum?					
a) Lysosomes	b) mitochondria					
c) Nucleus	d) peroxisomes					
46. A C-terminal peptide sequence of four amino a	acids, Lys-Asp-Glu-Leu (KDEL) directs					
proteins to which of the following organelles?						
a) Endoplasmic reticulum	b) Mitochondria					
c) Nucleus	d) peroxisomes					
47. In what form do proteins cross the mitochondri	al membranes?					
a) Bound to an importin protein via a signal seq	uence					
b) In fully folded form						
c) In unfolded extended form attached to Hsp 70	O chaperones					
d) In unfolded extended form without chaperone	es					
48. What constitutes the driving force for transpor	t of proteins into and out of the nucleus?					
a) ATP hydrolysis within the cytosol.						
b) ATP hydrolysis within the nucleus.						
c) GTP hydrolysis within the cytosol.						
d) GTP hydrolysis within the nucleus.						
49. Which of the following signals directs a protein	to the lysosomes?					
a) A lys-asp-glu- leu (KDEL) sequence in the	protein.					
b) Dolichol phosphate.						
c) Attached carbohydrate with terminal manne	ose-6-phosphate.					
d) Attached carbohydrate with terminal manne	ose.					
50. Vesicles leaving the trans Golgi carry on their	surfaces a protein which targets them to the					
appropriate organelle. This protein is:						
a) t-SNARE b) Coatomer	c) v-SNARE d) Clathrin					
51. Flow cytometry uses						
a) Radioactive elements	b) Heavy isotope					
c) Immunological techniques	d) Energy content					

52. H	ow are the cells sorted	using flow cytometry?				
a)	a) By dilution plating until there are only single cell in each well of microtiter plate					
b)) By the differential weight					
c)	c) By electrostatic force					
d)	By magnetic force					
53. W	hich fluorescent dye ca	n be used for red fluor	rescence?			
a)	Rhodamine	b) Fluorescein	c) Carmine	d) DAPI		
54. Po	ost translational modific	cation of many eukaryo	otic proteins begins in	the		
a) e	endoplasmic reticulum		b) mitochondria			
c) (chloroplasts		d) nucleus			
55. Nı	uclear localization sign	al is rich in				
a) t	ryptophan and histidin	e	b) serine and threoning	ne		
c) §	glutamine and asparagi	ne	d) lysine and arginine	•		
56. H	ow many amino acid re	sidues are there in ubi	quitin?			
a) 7	72	b) 73	c) 75	d) 76		
57. Pr	57. Protein insertion into the mammalian ER membrane is typically					
a) (cotranslational		c) pretranslational			
b) j	post-translational		d) quasitranslational			
58. Pr	oteins that do not fold	properly in the ER lum	en are degraded in the	cytosol by		
a) t	he etiosome		c) the proteasome			
b) 1	the microsome		d) the ribosome			
59. N-	linked oligosaccharide	s are:				
a) A	Added in the cis Golgi	and modified in the tra	ns Golgi			
b) .	Added in the trans Golg	gi and modified in secr	etory vesicles			
c) 1	Added in the ER and m	odified in the Golgi				
d) .	Added in the Golgi and	l modified in the ER				
60. TI	M stands for					
a) i	nner membrane translo	ocase	b) outer membrane tr	anslocase		
c) t	erminal inner membra	ne protein	d) terminal outer men	nbrane protein		
61. T	ubulin protein is used b	by cells to				
a)	to perform glycolysis		b) hold their shape			

	c) function properly		d) change their shap	e	
62.	Microfilaments are con	nposed of			
	a) actin protein		b) chitin protein	b) chitin protein	
	c) tubulin protein		d) mosaic protein		
63.	Microfilaments are invo	lved in			
	a) cyclosis		b) amoeboid movem	nent	
	c) furrow formation dur	ing cell division	d) all of these		
64.	. Chromosome movemen	nt during cell division	is regulated by		
	a) microtubules		b) microfilaments		
	c) intermediate filament	S	d) all of these		
65.	Which of the following	is a microtubule assoc	ciated protein (MAPs)?		
	a) 'Tus' protein	b) 'Tau' protein	c) 'rho' protein	d) G protein	
66.	Which of the following comes under the categor		gory of cell surface rece	ry of cell surface receptor?	
a) enzyme linked receptor		ors	b) ion-channel linke	d receptors	
	c) G-protein linked recep	otors	d) all the above		
67.	Microtubules are made	up of	3		
	a) actin	b) myosin	c) tubulin	d) troponin	
68.	Inactive Ras protein is b	oound to			
	a) GDP	b) AMP	c) ADP	d) GMP	
69.	During the Ras pathway	у			
	a) cytoplasmic protein k	inases are activated			
	b) the growth factor receptor is dephosphorylated				
	c) growth factors bind to receptors in the cytoplasm				
	d) leads to the production	on of translation factor	rs		
70.	. The enzyme that catalyses the splitting of PIP2 into two molecules of inositol triphosphate				
	(IP3) and diacylglycerol in cell-signalling is				
	a) Phosphokinase C		b) phospholipase C		
	c) Phosphodiesterase C		d) lipokinase		
71.	Which of the following	is a second messenger	:?		
	a) inositol 1,4,5 triphosp	phate	b) diacylglycerol		
	c) phospholipase C		d) both a) and b)		

72.	The hormone or ligand can be considered as				
	a) first messenger	b) second messenger			
	c) both a) and b)	d) none of these			
73.	The following points about microfilaments are t	rue except			
	a) They form cytoskeleton with microtubules				
	b) They provide support and shape				
	c) They form intracellular conducting channels				
	d) They are involved in muscle cell contraction				
74.	Hormone that binds to intracellular receptor is				
	a) Adrenocorticotropic hormone	b) Thyroxine			
	c) Follicle stimulating hormone	d) Glucagon			
75.	Hormone receptors possess all the following pro-	operties except			
	a) All of them are proteins				
	b) They possess a recognition domain	. 5			
	c) They bind hormones with a high degree of sp	ecificity			
	d) Number of receptors in a target cell is constant	it			
76.	Some hormones produce their intracellular effects by activating				
	a) Phospholipae A1	b) Phospholipase B			
	c) Phospholipase C	d) All of these			
77.	G-proteins act as				
	a) Hormone carriers	b) Hormone receptors			
	c) Second messengers	d) Signal transducers			
78.	Protein kinase C is activated by				
	a) Cyclic AMP	b) Cyclic GMP			
	c) Diacyl glycerol	d) Inositol triphosphate			
79.	The nucleotide binding site of G-proteins is pres	ent on their			
	a) α-Subunit	b) α -Subunit β - and γ -			
	c) β-Subunit	d) γ-Subunit			
80.	In catalytic receptors, activity initiator at extrace	ellular surface is			
	a) protein binding	b) ion binding			
	c) ligand binding	d) cell binding			

81. A benign tumor is one in which the cancerous of	ells				
a) have an unusual number of chromosomes					
b) can divide indefinitely if an adequate supply of	b) can divide indefinitely if an adequate supply of nutrients is available				
c) migrate from the initial site of transformation	to other organs or				
d) remain confined to their original site					
82. The p53 gene					
a) is the most frequently mutated gene in human	cancer				
b) can lead to cell cycle arrest at the G1 checkpo	int				
c) can trigger apoptosis.					
d) all of the above					
83. What is true of proto-oncogenes?					
a) cells produce proto-oncogenes as a by-produc	t of mitosis				
b) proto-oncogenes are necessary for normal cor	trol of cell division				
c) proto-oncogenes are genetic junk that has not	yet been eliminated by natural				
selection					
d) proto-oncogenes are unavoidable environmen	tal carcinogens				
84. Progression through the eukaryotic cell cycle is	raculated by				
a) microtubules	b) the p53 gene				
c) cyclin-dependent kinases	d) DNA ligase				
85. Characteristics of cancer include	d) DNA ligase				
a) self-sufficiency in growth signalingb) evasion of apoptosis					
,	over takes place?				
86. During which stage of prophase I the crossing of	_				
a) pachytene b) leptotene 87. Cancer is caused due to	c) zygotene d) diplotene				
	h) Un controlled mitoric				
a) Controlled mitosis	b) Uncontrolled mitosis				
c) Controlled meiosis	d) Uncontrolled meiosis				
88. Migration of cancerous cells from the site of or	gii to other part of the body forming				
secondary tumours is called					

a) diapedesis	b) metastasis	c) proliferation	d) none of these		
89. Which one of the fol	lowing therapies will inv	olve only the cancerou	is cells not the normal		
cells in treatment?					
a) immunotherapy	b) aromatherapy	c) surgery	d) chemotherapy		
90. In order to enter a ce	ll cycle a cell must be sti	mulated from outside.	What type of		
molecule provides th	is stimulation?				
a) cyclins		b) cyclin-dependen	t kinases		
c) cytokines and grov	wth factors	d) tyrosine kinases			
91. In which phase of the	e cell cycle is DNA replie	cated?			
a) G1 phase	b) S phase	c) G2 phase	d) M phase		
92. At which cell cycle c	checkpoint is the cell cyc	le halted if the cell's D	NA is damaged?		
a) G ₁ -S	b) S-G ₂	c) G ₂ -M	$d) G_0-G_1$		
93. Which cell organelle	s are involved in the init	iation of the intrinsic p	eathway of apoptosis?		
a) endoplasmic retic	culum b) lysosomes	c) mitochondria	d) peroxisomes		
94. Which of the followi	ng are killed by the extri	nsic pathway of apopt	osis?		
a) cells with damage	d DNA	3			
b) developing nerve	cells that fail to make pro	ofitable connections			
c) irradiated cells	. 00				
d) virus infected cell	s				
95. Passage through whi	ch check point is the step	which commits the co	ell to proceed through		
to mitosis and cell d	livision?				
a) G ₁ to S	b) S to G ₂	c) G ₂ to M	d) M to G_1		
96. The triggering of intr	rinsic pathway of apoptor	sis involves a balance	between pro-apoptotic		
and anti-apoptotic p	roteins. Which of the fol	lowing is anti-apoptot	ic?		
a) Bax	b) Bad	c) Bcl-2	d) Cytochrome-C		
97. 'Retroviruses' are also	o called as				
a) DNA Tumor viru	a) DNA Tumor virus		b) RNA Tumor virus		
c) Naked Viruses		d) Enveloped virus	es		
98. 'Papovavirus' is the					
a) DNA Tumor viru	ıs	b) RNA Tumor vir	us		
c) Enveloped viruses	c) Enveloped viruses d) Naked viruses				

- 99. Which of the following statements about the Rb tumour suppressor protein is correct?
 - a) Rb is activated when phosphorylated by Cdk.
 - b) Rb binds the transcription factor E2F and thus prevents the cell from entering S phase until a mitogenic signal is received.
 - c) Rb is a transcription factor.
 - d) When a mitogenic signal is received, Rb binds the transcription factor E2F and thus stimulates the cell to enter S phase
- 100. Which of the following types of protein could be coded by a tumour-suppressor gene?
 - a) A protein that forms part of a growth factor signalling pathway.
 - b) A protein that codes for a DNA repair enzyme.
 - c) A protein that helps prevent apoptosis.
 - d) A protein that controls progression through the cell cycle.

SECTION - B

- 1. List the functions of plasma membrane.
- 2. Give the classification of membrane proteins.
- 3. Comment on membrane fluidity.
- 4. What is the Biochemical composition of lipid bilayer?
- 5. Write short notes on porins.
- 6. What are the vital roles of membrane proteins?
- 7. Add notes on RBC ghosts.
- 8. What are lectins? Give the types and functions of it.
- 9. Brief on the function of bacteriorhodopsin.
- 10. How are human blood group antigens synthesized?
- 11. Give an overview on membrane transport.
- 12. What is osmosis? Explain the types of osmosis.
- 13. How the substances are transported by facilitated diffusion?
- 14. Comment on Gastric H⁺K⁺ ATPase.
- 15. Write short notes on mammalian MDR proteins.
- 16. Brief on carriers and ion channels.
- 17. Describe the process of Phagocytosis.
- 18. How the transport process is mediated by ion gradients?
- 19. Write about bacterial PM permeases.
- 20. Differentiate active transport from passive transport.
- 21. List the applications of flow cytometry.
- 22. What is cell sorting? Explain the types.
- 23. How are secretary proteins synthesized?
- 24. Brief on signal hypothesis of proteins.
- 25. Comment on post translational modifications of proteins.
- 26. Describe the process of protein glycosylation.
- 27. How are membrane proteins synthesized?

- 28. What are the proteins associated with mitochondrial protein traffic?
- 29. Sketch the instrumentation of flow cytometry.
- 30. Describe the secretary pathway of proteins.
- 31. Describe the structure and assembly of actin filaments.
- 32. Describe the organization of Microtubules.
- 33. List the functions of microtubules.
- 34. Describe the action of kinesin and dynein.
- 35. Give the organization of skeletal muscle.
- 36. Give a brief note on G-protein coupled receptor.
- 37. How neurotransmitters are transducing the signals?
- 38. Describe the cGMP cell transduction.
- 39. Comment on signal transduction by Ca ²⁺.
- 40. How different products of inositol phosphate transmit signals?
- 41. Describe the various phases of cell cycle.
- 42. Add short notes on cell cycle control.
- 43. Brief on programmed cell death.
- 44. List the properties of tumour cells.
- 45. What is cancer? Give the different types of cancer.
- 46. Describe the role of DNA viruses in tumour development.
- 47. What are the functions of tumour suppressor gene products.
- 48. Give the significance of p53 in tumour suppression.
- 49. How is apoptotic pathway regulated?
- 50. RNA viruses as transforming agents Justify.

SECTION - C

- 1. Explain the lipid bilayer model of plasma membrane with a labeled sketch.
- 2. Discuss the various proposed membrane bilayer models.
- 3. Explain the various liposome experiments on membrane bilayer functions.
- 4. With structures write about the various membrane lipids.
- 5. Give a detailed account on membrane proteins.
- 6. Describe the following: i) solubilisation of proteins ii) membrane asymmetry
- 7. Write about any two proteins of RBC membrane.
- 8. Write detailed notes on lipid anchored proteins.
- 9. Elaborate on cell surface carbohydrates.
- 10. Detail on blood group antigens.
- 11. Explain the passive transport in detail.
- 12. Describe the function of Ca²⁺ ATPase with a sketch.
- 13. How the sodium-potassium pump is functioning and regulated?
- 14. Elaborate on ABC superfamily proteins.
- 15. Write notes on ATPases that transport peptides and drugs.
- 16. How the transport process is driven by light and ion gradients?
- 17. Explain the process of exocytosis.
- 18. Discuss on the receptor mediated endocytosis.
- 19. Give a detailed note on bulk transport across plasma membrane.
- 20. Describe the following: i) pinocytosis ii) ultraphagocytosis

iii) endocytosis

iv) chromoplexy.

- 21. Explain the principle, technique and applications of flow cytometry.
- 22. Describe the cell sorting technique.
- 23. Elaborate on protein traffic in and out of the nucleus.
- 24. Detail on sorting of lysosomal proteins.
- 25. How are the secretory proteins modified after their synthesis?
- 26. Give an account on import of mitochondrial proteins.

- 27. Sketch the secretary pathway of proteins with description.
- 28. Explain the events taking place in the lumen of ER.
- 29. Describe the experiments in support of the protein traffic and localization.
- 30. Explain the synthesis of nuclear coded and membrane proteins.
- 31. Describe the structure and assembly of microfilaments.
- 32. Explain the organization, dynamics and functions of microtubules.
- 33. Sketch the structure of a skeletal muscle and comment on its organization.
- 34. Outline the mechanism of muscle contraction.
- 35. Describe the functions of receptor tyrosine kinases.
- 36. Elaborate on MAP kinase signaling pathway.
- 37. Describe the Ras signaling pathway.
- 38. Explain the cAMP signal transduction pathways.
- 39. What are G-protein coupled receptors? Explain the mechanism of signal transduction.
- 40. Give a detailed account on the signaling molecules and their receptors.
- 41. Give the overview of cell cycle.
- 42. How the cell cycle is controlled in mammalian cells?
- 43. Explain the various checkpoints in cell-cycle regulation.
- 44. Explain the extrinsic pathway of apoptosis.
- 45. Describe on the genetic basis and onset of cancer.
- 46. Explain any two tumour causing viruses and their mode of action.
- 47. Explain the pathway and consequences of rb mutation in mammalian cells.
- 48. Elaborate on tumour suppressor gene products.
- 49. What is the importance of p53? Explain its mechanism of action.
- 50. What is the role of BRCA 1 and 2? What happens when they are mutated?

SECTION – A

ANSWER KEY

- 1) b) sphingolipid
- 2) d) lateral diffusion
- 3) b) recognition
- 4) b) glycophorins
- 5) d) all of the above
- 6) c) hydrophilic and hydrophobic
- 7) b) asymmetric
- 8) a) symport
- 9) d) Perform all of these functions
- 10) a) Ceramide with one or more sugar residues
- 11) b) Both polar and nonpolar groups
- 12) d) cell membrane
- 13) b) intrinsic proteins
- 14) b) lipid bilayer
- 15) c) selectively permeable
- 16) c) flip flop diffusion
- 17) c) 1972
- 18) c) both A and B
- 19) a) Cholesterol
- 20) a) 2-10% by weight
- 21) a) Phagocytosis
- 22) c) receptor mediated endocytosis
- 23) d) all the above
- 24) b) pinocytosis
- 25) b) passive transport
- 26) c) K⁺
- 27) a) Hypertonic
- 28) c) facilitated diffusion

- 29) a) Lysosomes
- 30) d) All of these
- 31) a) Lysosomes
- 32) b) isotonic solution
- 33) c) 0 Kcal
- 34) b) active transport
- 35) a) primary active transport
- 36) a) 1
- 37) d) Endocytosis
- 38) a) Carrier protein
- 39) c) receptor mediated endocytosis
- 40) b) Na+ K+ ATPase
- 41) b) RER
- 42) b) lysosomes
- 43) c) golgi apparatus
- 44) d) all of these
- 45) a) Lysosomes
- 46) a) Endoplasmic reticulum
- 47) d) In unfolded extended form without chaperones
- 48) c) GTP hydrolysis within the cytosol.
- 49) c) Attached carbohydrate with terminal mannose-6-phosphate
- 50) c) v-SNARE
- 51) c) Immunological techniques
- 52) c) By electrostatic force
- 53) a) Rhodamine
- 54) a) endoplasmic reticulum
- 55) d) lysine and arginine
- 56) d) 76
- 57) a) cotranslational
- 58) c) the proteasome
- 59) c) Added in the ER and modified in the Golgi

- 60) a) inner membrane translocase
- 61) b) hold their shape
- 62) a) actin protein
- 63) d) all of these
- 64) a) microtubules
- 65) b) 'Tau' protein
- 66) d) all the above
- 67) c) tubulin
- 68) a) GDP
- 69) a) cytoplasmic protein kinases are activated
- 70) b) phospholipase C
- 71) d) both a) and b)
- 72) a) first messenger
- 73) c) They form intracellular conducting channels
- 74) b) Thyroxine
- 75) d) Number of receptors in a target cell is constant
- 76) c) Phospholipase C
- 77) d) Signal transducers
- 78) c) Diacyl glycerol
- 79) a) α-Subunit
- 80) c) ligand binding
- 81) d) remain confined to their original site
- 82) d) all of the above
- 83) c) proto-oncogenes are genetic junk that has not yet been eliminated by natural selection
- 84) c) cyclin-dependent kinases
- 85) d) all of the above
- 86) a) pachytene
- 87) b) Uncontrolled mitosis
- 88) b) metastasis
- 89) a) immunotherapy
- 90) c) cytokines and growth factors

- 91) b) S phase
- 92) a) G1-S
- 93) c) mitochondria
- 94) d) virus infected cells
- 95) a) G1 to S
- 96) c) Bcl-2
- 97) b) RNA Tumor virus
- 98) a) DNA Tumor virus
- 99) b) Rb binds the transcription factor E2F and thus prevents the cell from entering S phase until a mitogenic signal is received
- 100) d) A protein that controls progression through the cell cycle.

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS),

COIMBATORE - 641029.

DEPARTMENT OF BIOCHEMISTRY (PG AND RESEARCH)

M.Sc BIOCHEMISTRY

QUESTION BANK

ODD SEMESTER (2018-19)
C.P.11 CLINICAL BIOCHEMISTRY (17PBC311)

C.P.11-CLINICAL BIOCHEMISTRY

SECTION - A

(Knowledge level K1 Remembering is to be followed in relation to Course Outcomes specified as per bloom's Taxonomy)

Choose the correct answer:

1.	C-reactive protein is produced by					
	a) Liver	b) Brain	c) Heart	d) Pancreas		
2.	The normal range of CRP is					
	a) 50 mg/L	b) Below 2 mg/L	c) 1 mg/L	d) 30 mg/L		
3.	Which of the following is a h	ormone usually produc	ced during pregnancy	only		
	a) hCG	b) TSH	c) LH	d) FSH		
4.	The specimen used to diagno	sis pregnancy test is				
	a) CSF	b) Amniotic fluid	c) Serum	d) Urine		
5.	Rheumatoid arthritis is a dise	ease caused by abnorma	alities in which system	of the body?		
	a) Nervous system		b) Immune system			
	c) Digestive system		d) Respiratory system	1		
6.	Which of the following struc	tures in RA has a chron	nic inflammatory react	tion?		
	a) Articular cartilage	b) Capsule	c) Subchondral	d) Synovial tissues		
7.	The normal range of erythrod	cyte sedimentation rate	is			
	a) 0-50 mm/hr	b) 5-20 mm/hr	c) 1-100 mm/hr	d) 8-40 mm/hr		
8.	Erythrocyte sedimentation ra	te test is also called as				
	a) Sed rate test	b) Pregnancy test	c) Coagulation test	d) RA test		
9.	Fibrinogen is a					
	a) Glycolipid	b) Glycoprotein	c) Glycerolipid	d) Phospholipids		
10.	The normal range of prothron	mbin time is				
	a) 15-20 sec	b) 25-39 sec	c) 27-42 sec	d) 10-18 sec		
11.	Which tube is used in coagul	ation testing?				
	a) Heparin	b) EDTA	c) Sodium citrate	d) Sodium fluoride		

12.	Major constituent of hemoglo	obin receives iron from	ı	
	a) Liver	b) Bolus	c) Chyme	d) Lungs
13.	The normal range of hemogle	obin in female is		
	a) 1-4 g/dl	b) 30-40 g/dl	c) 40-50 g/dl	d) 12-15 g/dl
14.	Oxygen combines with hemo	globin in blood and fo	rm	
	a) Oxyhemoglobin		b) Deoxyhemoglobin	
	c) Hemoglobin		d) Carbohemoglobin	
15.	Thalassemia is characterized	by defect in production	n of	
	a) Alpha globin chain		b) Beta globin chain	
	c) Pyrrole		d) Alpha and beta glo	bin chain
16.	Beta thalassemia is also calle	d as		
	a) Hemoglobinopathies		b) Cooley anemia	
	c) Sickle cell anemia		d) Alpha thalassemia	
17.	The globin chain composition	n HbF is	9	
	a) Alpha2 beta2	b) Alpha2 gamma2	c) Alpha2 delta2	d) Beta 4
18.	Hemoglobin is separated by u	using		
	a) Electrophoresis	b) Chromatography	c) Centrifugation	d) Colorimetry
19.	Life span of RBC is	0		
	a) 50 days	b) 75 days	c) 100 days	d) 120 days
20.	Porphyria that is caused due	to defect in uroporphyr	rinogen I synthase is te	rmed as
	a) Acute intermittent porphyrin		b) Porphyria cutanea tarda	
	c) Hereditary corproporphyri	a	d) Variegate porphyri	a
21.	Most of the volume of norma	d human blood is comp	posed of	
	a) Red cells	b) Hemoglobin	c) Plasma	d) White cells
22.	Which vein is the first choice	for primary vein selec	ction for a venipuncture	e?
	a) Basillic	b) Cephalic	c) Median cubital	d) Hand vein
23.	At what angle should you ins	ert the needle?		
	a) 15 degrees	b) 90 degrees	c) 25 degrees	d) 30 degrees
24.	The anticoagulant used in art	erial blood gas specime	en collection is:	
	a) EDTA	b) Heparin	c) Sodium citrate	d) Formalin

25. Which of the following is an acceptable range of needle gauges for arterial puncture?				l puncture?	
	a) 16 to 21	b) 18 to 23	c) 20-25	d) 23 to 28	
25.	The first choice location for p	performing arterial pur	ncture is the:		
	a) Brachial artery	b) Ulnar artery	c) Femoral artery	d) Radial artery	
26.	The smallest veins of the hun	nan anatomy are know	n as		
	a) Capillaries	b) Arteries	c) Venules	d) Arterioles	
27.	Which colour evacuated tube	used to collect for con	mplete blood count?		
	a) Green	b) Lavender	c) Orange	d) Black	
28.	Anticoagulants are used to pr	revent	(
	a) Deep vein thrombosis		b) Respiratory disease	es	
	c) Brain disease		d) Acute renal failure		
29.	Normal urine primarily cons	sist of			
	a) Water, protein, and sodium		b) Water, urea, and protein		
	c) Water, urea, and sodium c	hloride	d) Water, urea, and b	ilirubin	
30.	Considering normal urine con	mposition, urea conten	t is		
	a) 7.7 g /L	b) 8.7 g/L	c) 9.3 g/L	d) 10.2 g/L	
31.	The example for urine preser	vative is			
	a) Thymol	b) Glucose	c) Acetone	d) Ethanol	
32.	32. The normal range of urine pH is				
	a) 9-10	b) 4.5-8.0	c) 2.0-4.0	d) 10-13	
33.	The normal amount of glucos	se in urine is			
	a) 0-0.8 mmol/L	b) 2.0-3.0 mmol/L	c) 2.5-6.0 mmol/L	d) 7.0-8.0 mmol/I	
34.	CSF is produced in				
	a) Heart	b) Kidney	c) Brain	d) Adipose tissue	
35.	The daily turnover of CSF is	about			
	a) 1000 ml	b) 500 ml	c) 200 ml	d) 1200 ml	
36.	In which lumbar puncture reg	gion used to collect CS	SF?		
	a) L3 and L4	b) L6 and L7	c) L4 and L5	d) L8 and L8	
37.	Amniotic fluid is produced in	1			
	a) Liver	b) Lung	c) Amniotic sac	d) Kidney	

38.	8. Amniocentesis is generally performed between				
	a) 20 and 25 weeks	b) 50-60 weeks	c) 4-8 weeks	d) 15 and 18 weeks	
39.	9. The colour of amniotic fluid is				
	a) Red brown	b) Colourless	c) Yellow	d) Dark green	
40.	AST is the marker for				
	a) Kidney	b) Lung	c) Liver	d) Brain	
41.	Then number of carbon prese	ent in isoprene units ar	e		
	a) 50-60 U/L	b) 7-55 U/L	c) 20-40 U/L	d) 15-25 U/L	
42.	In which of the following con	nditions the level of cre	eatinine kinase 1 increa	ises?	
	a) Myocardial ischemia	b) Brain ischemia	c) Kidney damage	d) Diabetes	
43.	The composition of LDH-2 s	ubunits is			
	a) H4	b) H3M	c) H2M2	d) HM3	
44.	The reference range of ACP	is			
	a) 10 ng/ml	b) 50 ng/ml	c) 2 ng/ml	d) 6 ng/ml	
45.	Isocitrate dehydrogenase is c	atalyzed the reaction c	alled		
	a) Isomerization		b) Phosporylation		
	c) Polymerization		d) Oxidative decarbox	xylation	
46.	Which of the following mark	er is used for the diffe	rential diagnosis of obs	structive	
	jaundice?	O			
	a) LDH	b) 5'Nucelotidase	c) CK	d) Glucosidase	
47.	The normal range of 5'nucleo	otidase is			
	a) 15-19 U/L	b) 1-2 U/L	c) 2-15 U/L	d) 30-35 U/L	
48.	Gamma glutamyl transferase	is used to detect the d	isease of		
	a) Liver	b) Brain	c) Kidney	d) Lung	
49.	The transfer of gamma gluta	amyl group from pept	ides to acceptor peption	de molecules is	
	catalyzed by the enzyme				
	a) Lipase	b) Amylase	c) GGT	d) Esterase	
50.	In which condition the level of	of lipase is increased?			
	a) Pancreatitis	b) Gastritis	c) Meningitis	d) Heart problem	
52	. Lipase is produced by				
	a) Brain	b) Pancreas	c) Liver	d) Kidney	

51	. The normal range of lipase is	3			
	a) 80-120 U/L	b) 80-150 U/L	c) 0-160 U/L	d) 1-2 U/L	
52	52. When does serum amylase rise in acute pancreatitis?				
	a) 6 hours	b) 24 hours	c) 72 hours	d) 3-5 days	
53	. How long does serum amylas	se remains elevated in	acute pancreatitis?		
	a) Less than 24 hours	b) 1-3 days	c) 5-14 days	d) 2-4 weeks	
54	. In the intestine, trypsinogen i	is converted into trypsi	n by the action of		
	a) Pepsin	b) Trypsin	c) Enterokinase	d) Elastase	
55	. Chymotrypsin is an				
	a) Endopeptidase	b) Exopeptidase	c) Exonuclease	d) Endonuclease	
56	. The normal range of cholines	sterase is			
	a) 20-25 U/ml	b) 8-18 U/ml	c) 30-35 U/ml	d) 40-50 U/ml	
57	. The level of thyroid hormone	e is decreased from the	normal range is called		
	a) Hyperglycemia	b) Hypoglycemia	c) Hypothyroidism	d) Hyperthyroidism	
58	. The normal serum protein lev	vel is			
	a) 6-8 g/dl	b) 9-10 g/dl	c) 12-14 g/dl	d) 15-20 g/dl	
59. The normal range of total bilirubin is					
	a) 5-10 mg/dl	b) 6-9 mg/dl	c) 11-15 mg/dl	d) 0.1-1.2 mg/dl	
60	. Jaundice is caused due to inc	rease amount of			
	a) Uric acid	b) Hemoglobin	c) Bilirubin	d) Potassium	
61	. Bilirubin is the waste produc	t is released during the	breakdown of		
	a) Mast cell	b) RBC	c) WBC	d) Platelets	
62	. Late stage of chronic liver di	sease is called			
	a) Cirrhosis	b) Liver failure	c) Fatty liver	d) Liver cancer	
63	. Cirrhosis is most accurately of	diagnosed by			
	a) Eye exam	b) Blood test	c) Liver biopsy	d) Urine exam	
64	. Which of the following viral	causes of hepatitis is t	ransmitted by contamin	nated food or	
	water?				
	a) Hep D	b) Hep E	c) Hep C	d) Hep B	
65	. Hepatitis is caused due to the	e inflammation of			
	a) Brain	b) Kidney	c) Pancreas	d) Liver	

66. Which one of the following	diseases characteris	tically causes fatty change	e in liver?		
a) Hep B virus infection		b) Wilson's disease	b) Wilson's disease		
c) Hep C virus infection		d) Chronic alcoholisr	n		
67. Fatty liver is the accumulation	on of				
a) Fat	b) Protein	c) Nucleic acid	d) Carbohydrates		
68. Most common type of gall st	tones				
a) Pigment stones		b) Cholesterol stones			
c) Calcium bilirubinate		d) Pure cholesterol st	ones		
69. The most common site of ga	ll stone formation is	s			
a) Gall bladder	b) Cystic duct	c) Common bile duct	d) Hepatic duct		
70. The normal range of creatini	ne in serum is				
a) 0.1-0.5 mg/dl	b) 0.6–1.1 mg/dl	c) 1.5-2.0 mg/dl	d) 2.5-3.0 mg/dl		
71. The symptoms of acute rena	l failure is				
a) Increased urine output		b) Anuria			
c) Decreased urine output		d) Seizures			
72. The function of glomeruli is					
a) Respiration	b) Circulation	c) Filtration	d) Coagulation		
73. In renal tubular acidosis the	73. In renal tubular acidosis the pH of urine will be				
a) Acidic	b) Basic	c) Alkali	d) Neutral		
74. The renal calculi seen in pati	ents with distal RT	A are most likely to be			
a) Struvite	b) Uric acid	c) Calcium oxalate	d) Calcium phosphate		
75. Cystine calculi occur only in the presence of					
a) Hyperthyroidism	b) Infection	c) Hypercalciuria	d) Cystinuria		
76. Normal fasting gastric juice per day is about					
a) 5 L	b) 1 L	c) 2 L	d) 10 L		
77. When does serum amylase ri	ise in acute pancrea	titis?			
a) 6 hrs	b) 24 hrs	c) 72 hrs	d) 1 hr		
78. Hyperlipoproteinemai is due	78. Hyperlipoproteinemai is due to the deficiency of enzyme				
a) Amylase	b) Lyase c) l	Lipoprotein lipase	d) Kinase		

79.	Apoptosis is defined as				
	a) Programmed cell death		b) Non programmed cell death		
	c) Accidental cell death		d) Mitotic cell	death	
80.	Which of the following is an	anti apoptotic protein?	•		
	a) BCl-Xs	b) Bfl 1	c) Bim		d) NOXA
81.	Which of the following is an a) Caspase	inhibitor of apoptosis? b) SMAC	c) IAP		d) DIABLO
82	Caspase is activated by		0) 11 11		u) Dii ibio
02.	a) IAP	b) DNAse	c) RNAse		d) Cytochrome
83	Which type of epidermal gro	,	,	n OSC	
00.	a) ErbB-5	b) ErbB-6	c) ErbB-1		d) ErbB-3
84.	The gene for Ki 67 is located	,			u) 2102 3
0	a) 10q25	b) 13p30	c) 10p25		d)13q30
85.	The normal range of prostate	stimulating antigen is	5		
	a) 6 ng/ml	b) 1 ng/ml	c) 4 ng/ml		d) 8 ng/ml
86.	BRCA 1 is a marker for				
	a) Liver cancer	b) Breast cancer	c) Colon cance	er	d) Skin cancer
87.	The marker for colorectal car	ncer is			
	a) CA 72-4	b) P53	c) CA 19.9		d) P21
88.	The normal range of CA 72	.4 is			
	a) Less than 6 U/ml		b) More than 6	5 U/ml	
	c) 10 U/ml		d) Less than 1	U/ml	
89.	Low level of alfa fetoprotein	is seen in			
	a) Cystic fibrosis	b) Wilson's disease	c) Down synd	rome	d) Hepatic cancer
90.	Increased WBC content will	leads to			
	a) Lung cancer	b) Leukemia	c) Skin cancer		d) Sarcoma
91.	Cancer is caused due to				
	a) Controlled mitosis		b) Uncontrolle	ed mito	sis
	c) Controlled meiosis		d) Uncontrolle	ed meio	sis
92.	Which of the following is the	most commonly muta	ated oncogene in	n cance	r?
	a) p53	b) ABL	c) RAS	d) BR	CA
		-			

93. Migration of cancerous cells from the site of origin to other part of the body forming secondary				
tumors is called				
a) Diapedesis	b) Metastasis	c) Proliferation	d) Apoptosis	
94. Mutation is caused by				
a) Carcinogein	b) Mutagen	c) Radiation	d) Proliferation	
95. From a single molecule of D	NA, PCR can make			
a) One additional copy		b) Hundreds of copie	S	
c) Thousands of copies		d) Millions of copies		
96. P53 is an				
a) Oncogene		b) Cytotoxic protein		
c) Tumor suppressor protein		d) Glycoprotein		
97. A free radical has				
a) Unpaired electrons	b) Paired electrons	c) No electrons	d) Even no. of electrons	
98. The example of enzymatic	antioxidant is	9		
a) Vitamin A	b) Vitamin E	c) Catalase	d) Vitamin D	

SECTION – B

- 1. Write a note on C-reactive protein test.
- 2. Explain rheumatoid arthritis test.
- 3. What is hemoglobin? Explain its types.
- 4. What is thalassemia? Give the causes of thalassemia.
- 5. Summarize the clinical significance of hemoglobin.
- 6. Give an account on porphyrins.
- 7. Explain the types of porphyrias.
- 8. Describe the role of erythrocyte.
- 9. Give the clinical significance of prothrombin test.
- 10. Explain the procedure involved in coagulation test.
- 11. Differentiate serum and plasma.
- 12. How will you collect the blood using skin puncture method?
- 13. Write a note on anticoagulants and its uses.
- 14. Explain the types of preservative to preserve the urine specimen.
- 15. What is meant by ketone bodies? Give its clinical significance.
- 16. Write down the clinical significance of bilirubin.
- 17. Give a note on clinical findings of proteins.
- 18. Explain the clinical findings of sugars.
- 19. What are different types of methods adapted to measure glucose and protein level in urine?
- 20. What is CSF? Give its clinical findings.
- 21. Write a short note on principle of clinical enzymology.
- 22. Give a note on principle and clinical significance of AST.
- 23. Explain the principle and clinical findings of acid phosphatase.
- 24. Write about procedure and clinical significance of 5'-nucleotidase.
- 25. Explain the procedure for glutamate dehydrogenase.

- 26. How would you explain the procedure and clinical findings of glucose-6-phosphate dehydrogenase?
- 27. Write a note on any three enzymatic patterns of hepatobiliary diseases.
- 28. What is meant by steroid? Explain its clinical significance.
- 29. Give a note on clinical significance of protein.
- 30. What is meant by thyroid hormone? Give its clinical findings.
- 31. List out the functions of liver.
- 32. Explain the types of jaundice.
- 33. Give a note on liver function test.
- 34. Explain the causes, symptoms and diagnostic test for cirrhosis.
- 35. Write a short note on alcoholic and non-alcoholic fatty liver.
- 36. How will you diagnosis the glomerular disease.
- 37. Explain the pathophysiology, diagnosis and clinical features of type I renal tubular acidosis.
- 38. How will you collect gastric sample. Explain about Hollanders test.
- 39. Write a note on causes, symptoms and diagnosis of hypolipoprotenemia.
- 40. What is meant by lipoprotein? Explain its types.
- 41. Explain the application of biomarker in oral cancer.
- 42. Give a note on prostate specific antigen with its clinical findings.
- 43. Write a short note on carcino embryogenic antigen.
- 44. Explain the types of leukemia with its diagnostic findings.
- 45. What is cancer? Explain the properties of cancer.
- 46. What are tumor suppressor genes? Give its functions.
- 47. How will you diagnosis the cancer using PCR.
- 48. What are free radicals? Explain the mechanism of antioxidants to quenching free radicals.
- 49. Write down the mechanism of lipid peroxidation.
- 50. Give a note on principle of any two types of enzymatic antioxidants.

SECTION - C

- 1. Give a brief account on pregnancy test.
- 2. Enumerate on CRP and RA test.
- 3. Briefly explain CRP latex test.
- 4. Describe the principle, procedure and clinical significance of RA test.
- 5. How will you separate the hemoglobin using electrophoresis?
- 6. Explain briefly on types of thalassemia.
- 7. Describe about types, pathophysiology and clinical findings of hemoglobinopathies.
- 8. Enumerate on erythrocyte metabolic pathway.
- 9. Explain in detailed note on disorders of erythrocyte metabolic pathway.
- 10. Describe on types, causes and clinical findings of prophrins.
- 11. Describe the detailed procedure involved in blood collection using vein puncture method.
- 12. How would you briefly summarize the collection of blood using arterial puncture.
- 13. Explain any two methods used to collect blood sample.
- 14. Enumerate on collection of timed urine specimen.
- 15. How could you explain the different methods used to test urinary compounds?
- 16. Briefly explain the clinical significance of urinary compounds.
- 17. Explain the collection and composition of CSF.
- 18. Give a brief account on origin, collection and composition of amniotic fluid.
- 19. Elaborate the types of chemical examination used with the help of CSF.
- 20. Briefly explain the analysis of amniotic fluid.
- 21. Elaborate the principle of diagnostic enzymology and write down the different factors that affect enzyme level in blood.
- 22. Explain the principle, assay and clinical significance of creatine kinase.
- 23. Briefly explain the principle, procedure and clinical findings of lactate dehydrogenase.
- 24. Give a brief account on principle, assay and clinical significance of isocitrate dehydrogenase.

- 25. Summarize about principle, procedure and clinical findings of gamma glutamyl transferase.
- 26. Describe the assay and clinical significance of amylase and trypsin.
- 27. Explain on principle, assay and clinical findings of trypsin and chymotrypsin.
- 28. Elaborate the principle, procedure and clinical significance of choline esterase.
- 29. Briefly explain the enzymatic pattern of myocardial infarction.
- 30. Enumerate on enzymatic pattern of hepatobiliary disease.
- 31. Briefly explain bilirubin metabolism.
- 32. Describe the causes, symptoms and diagnostic test with its clinical findings of hepatitis.
- 33. Enumerate briefly about gall stones.
- 34. Elaborate on renal function test.
- 35. Explain the causes, risk factors, symptoms and diagnostic test of acute kidney failure.
- 36. Summarize the chemical analysis of urinary calculi.
- 37. Explain on pancreatic function test.
- 38. Describe about gastric function test.
- 39. Elaborate the cause, symptoms and diagnostic test for hyperlipoprotenemia.
- 40. Give a brief account on diagnostic test for lipoprotein disorder.
- 41. Briefly explain intrinsic and extrinsic apoptotic pathway.
- 42. Describe about oral cancer marker.
- 43. Enumerate the marker for breast cancer.
- 44. Give a brief account on GI tract cancer biomarker.
- 45. Explain the structure, function and clinical findings of alpha fetoprotein.
- 46. Write a brief note on tumor suppressor genes and its functions.
- 47. Explain the mechanism of radiation that induces cancer.
- 48. Briefly explain the mechanism of chemical carcinogens.
- 49. What are free radicals and antioxidants? Explain its types.
- 50. Briefly summarize on production of haploid cells with its functions.

SECTION - A

ANSWER KEY

- 1. a) Liver
- 2. b) Below 2 mg/L
- 3. a) hCG
- 4. d) Urine
- 5. b) Immune system
- 6. d) Synovial tissues
- 7. b) 5-20 mm/hr
- 8. a) Sed rate test
- 9. b) Glycoprotein
- 10. b) 25-39 sec
- 11. c) Sodium citrate
- 12. a) Liver
- 13. d) 12-15 g/dl
- 14. a) Oxyhemoglobin
- 15. d) Alpha and beta globin chain
- 16. b) Cooley anemia
- 17. b) Alpha2 gamma2
- 18. a) Electrophoresis
- 19. d) 120 days
- 20. a) Acute intermittent porphyrin
- 21. c) Plasma
- 22. c) Median cubital
- 23. d) 30 degrees
- 24. b) Heparin
- 25. c) 20-25
- 26. d) Radial artery
- 27. c) Venules
- 28. b) Lavender

- 29. a) Deep vein thrombosis
- 30. c) Water, urea, and sodium chloride
- 31. c) 9.3 g/L
- 32. a) Thymol
- 33. b) 4.5-8.0
- 34. a) 0-0.8 mmol/L
- 35. c) Brain
- 36. b) 500 ml
- 37. a) L3 and L4
- 38. c) Amniotic sac
- 39. d) 15 and 18 weeks
- 40. b) Colourless
- 41. c) Liver
- 42. b) 7-55 U/L
- 43. b) Brain ischemia
- 44. a) H4
- 45. c) 2 ng/ml
- tion 46. d) Oxidative decarboxylation
- 47. b) 5'Nucelotidase
- 48. c) 2-15 U/L
- 49. a) Liver
- 50. c) GGT
- 51. a) Pancreatitis
- 52. b) Pancreas
- 53. c) 0-160 U/L
- 54. b) 24 hours
- 55. b) 1-3 days
- 56. c) Enterokinase
- 57. a) Endopeptidase
- 58. b) 8-18 U/ml
- 59. c) Hypothyroidism

- 60. a) 6-8 g/dl
- 61. d) 0.1-1.2 mg/dl
- 62. c) Bilirubin
- 63. b) RBC
- 64. a) Cirrhosis
- 65. c) Liver biopsy
- 66. b) Hep E
- 67. d) Liver
- 68. d) Chronic alcoholism
- 69. a) Fat
- 70. b) Cholesterol stones
- 71. a) Gall bladder
- 72. b) 0.6–1.1 mg/dl
- 73. c) Decreased urine output
- 74. c) Filtration
- 75. a) Acidic
- 76. c) Calcium oxalate
- 77. d) Cystinuria
- 78. b) 1 L
- 79. b) 24 hrs
- 80. c) Lipoprotein lipase
- 81. a) Programmed cell death
- 82. b) Bfl 1
- 83. c) IAP
- 84. d) Cytochrome
- 85. c) ErbB-1
- 86. a) 10q25
- 87. c) 4 ng/ml
- 88. b) Breast cancer
- 89. c) CA 19.9

- 90. a) Less than 6 U/ml
- 91. c) Down syndrome
- 92. b) Leukemia
- 93. b) Uncontrolled mitosis
- 94. c) RAS
- 95. b) Metastasis
- 96. b) Mutagen
- 97. d) Millions of copies
- AASC. Biochemistry (PG) 98. c) Tumor suppressor protein
- 99. a) Unpaired electrons
- 100.c) Catalase

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS),

COIMBATORE - 641029.

DEPARTMENT OF BIOCHEMISTRY (PG AND RESEARCH)

M.Sc BIOCHEMISTRY

QUESTION BANK

ODD SEMESTER (2018-19)
C.P.12 - BIOSTATISTICS AND RESEARCH METHODOLOGY
(17PBC312)

$\frac{\text{C.P.12 - BIOSTATISTICS AND RESEARCH METHODOLOGY}}{\text{SECTION} - \mathbf{A}}$

(Knowledge level K1 Remembering is to be followed in relation to Course Outcomes specified as per bloom's Taxonomy)

Choose the correct answer:

1.	Which of the following is	a continuous o	data?	
	a) Gender of a person		b) stages of cancer	
	c) cholesterol level		d) no. of children in a	a family
2.	Diagrams and graphs are	tools of		
	a) Collection of data	b) analysis	c) presentation	d) summarization
3.	Column headings are ca	lled as		
	a) Captions	b) stubs	c) head note	d) foot note
4.	Angular diagram is			
	a) Pie diagram		b) simple bar diagran	n
	c) multiple bar diagram		d) sub-divided bar di	agram
5.	Diagrams such as cubes	and cylinders	are classified as	
	a) one dimension diagram	ns	b) two dimension dia	agrams
	c) three dimensional diag	rams	d) dispersion diagran	ns
6.	Discrete variables and c	ontinuous vari	ables are two types of	
	a) open end classification	on	b) time series classifi	ication
	c) qualitative classification	n	d) quantitative classis	fication
7.	Classification method in	which upper	limit of interval is same	e as of lower limit class interval
	is called			
	a) exclusive method		b) inclusive method	
	c) mid-point method		d) ratio method	
8.	When data are classified	l according to	a single characteristic, i	it is called:
	a) Quantitative classificat	ion	b) Qualitative classif	ication
	c) Area classification		d) Simple classificati	on
9.	Classification of data acco	ording to locat	ion or areas is called:	
	a) Qualitative classification	on	b) Quantitative classi	ification
	c) Geographical classifica	ntion	d) Chronological class	ssification

10.	. When data are an	ranged at regular inte	rval of time, the classifi	ication is called:
	a) Qualitative	b) Quantitative	c) Chronological	d) Geographical
11.	. The frequency dis	stribution according to	o individual variate valu	ies is called:
	a) Discrete freque	ncy distribution	b) Cumulative freque	ency distribution
	c) Percentage freq	uency distribution	d) Continuous freque	ency distribution
12.	. A frequency dist	ribution can be:		
	a) Qualitative	b) Discrete	c) Continuous	d) Both (b) and (c)
13.	. The grouped data	are called:		
	a) Primary data	b) Secondary data	c) Raw data	d) Difficult to tell
14.	. A series of data v	with exclusive classes	along with the correspo	onding frequencies is called:
	a) Discrete freque	ncy distribution	b) Continuous	s frequency distribution
	c) Percentage freq	uency distribution	d) Cumulativ	e frequency distribution
15.	. The largest and t	he smallest values of	any given class of a free	quency distribution are called:
	a) Class Intervals	b) Class mar	ks c) Class boun	daries d) Class limits
16.	. The number of c	lasses depends upon:		
	a) Class marks	b) Frequency	c) Class inter	val d) Class boundary
17.	. The arrangement	of data in rows and co	olumns is called:	
	a) Classification		b) Tabulation	
	c) Frequency distr	ibution	d) Cumulative freque	ency distribution
18.	. Total angle of the	e pie-chart is:		
	a) 45°	b) 90°	c) 180°	d) 360°
19.	. Histogram is a gr	aph of:		
	a) Frequency distr	ibution b) Ti	me series c) Qua	alitative data d) Ogive
20.	. Ogive curve can	be occurred for the di	stribution of:	
	a) Less than type	e	b) More than type	
	c) Both (a) and (b))	d) Neither (a) and (b))
21.	. Which of the fol	lowing one is a related	d positional measure of	median?
	a) Mean	b) range	c) deciles	d) weighted average
22.	. The mode can be	e located graphically b	ру	
	a) Ogives	b) histogram	c) frequency polygon	d) harmonic mean

23. 7	The amount of cl	hange in one variable t	ends to bear constant r	atio to the amount of change
an	other variable th	nen the correlation is sa	aid to be	
a)	Linear	b) positive	c) negative	d) curvilinear
24. N	Median of 7, 6, 4	4, 8, 2, 5, 11 is		
a)	6	b) 12	c) 11	d) 4
25. N	Number which o	ccurs most frequently	in a set of numbers is	
a)	Mean	b) median	c) mode	d) None of above
26. I	f mean of 6 nun	bers is 41 then sum of	f these numbers is	
a)	250	b) 246	c) 134	d) 456
27. I	Distribution in w	hich values of median	, mean and mode are no	ot equal is considered as
a)	experimental di	stribution	b) asymmetrical distr	ibution
c)	symmetrical dis	tribution	d) exploratory distrib	ution
28. H	Extent to which	values are dispersed ar	ound central observation	on is considered as
a)	Trailing	b) variation	c) extension	d) centralized valuation
29. N	Mode is best mea	asure of tendency if an	alysis is	
a)	Descriptive	b) exploratory	c) experimental	d) set of deciles
30. \$	Standard deviation	on of population is den	noted by	
a)	Ω	b) ω	c) o	d) Σ
31. I	f arithmetic mea	nn is multiplied to coef	ficient of variation then	n resulting value is classified
as				
a)	coefficient of	deviation	b) coefficient of mean	1
c)	standard deviati	on	d) variance	
32. 7	The measuremen	its of spread or scatter	of the individual value	s around the central point is
ca	lled:			
a)	Measures of dis	persion	b) Measures of centra	ll tendency
c)	Measures of ske	ewness	d) Measures of kurtos	sis
33. 7	The measure of o	dispersion which uses	only two observations i	s called:
a)	Mean	b) Median	c) Range	d) Coefficient of variation
34. I	f the dispersion	is small, the standard of	deviation is:	
a)	Large	b) Zero	c) Small	d) Negative

35.	If there are ten val	ues each equal to 10,	then standar	d deviation of the	nese values is:
i	a) 100	b) 20	c) 10	d) 0	
36.	The lower and upp	er quartiles of a distr	ribution are 8	0 and 120 respe	ctively, while median is
	100. The shape of th	ne distribution is:			
i	a) Positively skewed	d b) Negatively	skewed	c) Symmetri	cal d) Normal
37.	A process by whic	h we estimate the va	lue of depend	dent variable on	the basis of one or more
i	independent variable	es is called:			
i	a) Correlation	b) Regression	c) R	tesidual	d) Slope
38.	In the regression e	quation $Y = a+bX$, the	ne Y is called	:	
i	a) Independent varia	able	b) Depende	ent variable	
(c) Continuous varial	ble	d) None of	the above	
39.	A measure of the s	trength of the linear	relationship	that exists between	een two variables is
(called:				
i	a) Slope b) Interc	cept c) Cor	relation coef	ficient d) Re	egression equation
40.	The term regression	on was used by:			
i	a) Newton	o) Pearson	c) Spearma	n d) G	alton
41.	Addition rule of pr	robability applies to			
;	a) Independent ev	ents	b) depende	nt events	
1	b) Mutually exclusion	sive events	d) mutually	inclusive event	s
42.	The mean of binor	nial distribution is			
i	a) npq l	o) np	c) n	d) po	1
43.	Each outcome of a	random experiment	is called		
i	a) compound even	b) simple eve	nt c) p	rimary event	d) derived event
44.	The probability dis	stribution expressing	the probabil	ity of one set of	dichotomous alternatives
j	is				
	a) binomial	b) poisson	c) n	ormal	d) multinomial
45.	All the following a	are properties of norm	nal curve exc	ept	
ä	a) bell shaped	b) unimodal	c) d	iscrete variable	d) asymptotic

46.	46. If the probability of defective bolt is 0.2, find the standard deviation for binomial distribution						
C	of d	efective bolts is	n a total of 100				
a	ı)	2	b) 4	c) 3		d) 8	
47.	In	random experi	ment, observations of	random variab	ole are classifie	ed as	
a	ı)	Events	b) composition	on c) tria	als	d) functions	
48.	In	binomial distri	bution, formula of cal	lculating standa	ard deviation is	S	
a	ı)	square root of	p	b) square roo	t of pq		
C	e) so	quare root of np	pq	d) square roo	t of np		
49.	In	binomial proba	ability distribution, su	ccess and failu	re generated by	y trial is respectively	
d	len	oted by					
a	ı)	p and q	b) a and b		c) p + q	d) p – q	
50.	No	ormal distributi	on is also classified as	S			
a	ı) (Gaussian distrib	oution	b) Poisson di	stribution		
c	e) B	ernoulli's distri	bution	d) weighted a	verage distrib	ution	
51.	In	probability the	ories, events which ca	an never occur	together are cl	assified as	
a	ı) c	ollectively exc	lusive events	b) mutually e	xhaustive ever	nts	
C	e) m	nutually exclusi	ve events	d) collectivel	y exhaustive e	vents	
52.	O	ecurrence of tw	o events in a way that	events have so	ome connection	n in between is classified	
a	ıs						
a	ı) c	ompound even	ts	b) mutual eve	ents		
C	e) c	onnected event	s	d) interlinked	levents		
53.	M	ethod in which	previously calculated	probabilities a	re revised with	n new probabilities is	
C	las	sified as					
a	ı) u	pdating theore	m	b) revised the	eorem		
C	e) B	ayes theorem		d) dependence	y theorem		
54.	Pr	obability of eve	ents must lie in limits	of			
a	ı) o	one to two	b) two to three	c) one to two	d) ze	ro to one	
55.	Co	onditional proba	ability of two indepen	dent events Y	and Z can be w	vritten as	
a) F	P(Y - Z)	b) $P(Y * Z)$	c) $P(Y Z)$	d) P((Y + Z)	

56. Previous probabilities in Bayes Theorem that are changed with help of new available						
	information are classified	as				
	a) independent probabilit	ies	b) posterio	r probabilit	ties	
	c) interior probabilities		d) depende	nt probabil	lities	
57	. Sample space for experi	ment in which t	wo coins are	e tossed is		
	a) 4 b) 8		c) 2		d) 10	
58	. If occurrence of one eve	ent affects or exp	plains occur	rence of ot	her evei	nt then events are
	classified as					
	a) known events		b) unknow	n events		
	c) independent events		d) depende	nt events		
59	. Discrete probability dist	ribution in which	ch outcome i	s very sma	all with	a very small period of
	time is classified as				4	
	a) posterior distribution		b) cumulati	ive distribu	ition	
	c) normal distribution		d) Poisson	distributio	n	
60	. Around central value of	observations, e	xtent to whi	ch values c	lepart fr	om normal distribution
	is classified as			•		
	a) negative variation		b) positive	variation		
	c) skewness		d) positive	trailing		
61	. An experimental design	is				
	a) a graph	b) a size	c) a	n item	d) a pla	an of experiment
62	. Appropriate statistical n	nethod to compa	are two mear	ns is		
	a) Student's t-test	b) chi-square	test c) o	dds ratio	d) para	metric sign test
63	. Analysis of variance tec	hnique originate	ed in			
	a) Agrarian research		b) industria	l research		
	c) biological research		d) social re	search		
64	. Local control in the field	d is maintained	through			
	a) Uniformity trails	b) randomizat	ion c) r	eplication		d) permutation
65	. When observed and exp	ected frequenci	es complete	ly coincide	, chi-sq	uare will be
	a) +1	b) zero	c) g	reater than	1	d) less than 1

66. What type	of data do you need for a ch	i-square test?	
a) parametri	c b) categorical	c) ratio	d) scale
67. The assump	otion in analysis of variance	is	
a) normality		b) homogeneity	
c) independe	nce of error	d) all the above	
68. What symb	ol is used to represent the ch	ni-square test?	
a) x^2	b) π	c) £	d) µ
69. How many	dependent variables are the	re in a two-way ANOVA?	
a) 1	b) 2	c) 3	d) 4
70. Randomiza	tion in an experiment helps	to eliminate	
a) Dependen	ce among observations	b) systematic influences	
c) human bia	as	d) error	
71. Which of th	e following is a non-parame	tric test ?	,
a) F test	b) t test	c) chi square test	d) z test
72. Any statem	ent whose validity is tested	on the basis of a sample is	called
a) Alternativ	e hypothesis	b) simple hypothesis	
c) statistical	hypothesis	d) null hypothesis	
73. Analysis of	variance technique was dev	eloped by	
a) Gosset	b) Karl Pearson	c) R.A.Fisher	d) Laplace
74. The number	r of independent values in a	set of values is called:	
a) Test-statis	tic	b) Degree of freedom	
c) Level of s	ignificance	d) Level of confidence	
75. Student's t-	statistic is applicable in case	e of:	
a) Equal nun	nber of samples	b) Unequal number of sa	mples
c) Small sam	ples	d) All of the above	
76. A statemen	t about a population develop	ped for the purpose of testi	ng is called:
a) Hypothesi	S	b) Hypothesis testing	
c) Level of s	ignificance	d) Test-statistic	

77. Test to be app	plied when number of ob	servations are less than	30 and variance is not known,
is said to be			
a) Z-test	b) T-test	c) F-test	d) Chi-square test
78. Which of the	following approach show	ald be used if you can't	fix the variable?
a) randomize i	b) non stratify it	c) generalize it	d) none of the Mentioned
79. The purpose of	of hypothesis testing is to	:	
a) test how far	the mean of a sample is	from zero	
b) determine w	hether a statistical result	t is significant	
c) determine tl	ne appropriate value of th	ne significance level	
d) derive the s	tandard error of the data		.00
80. An experimen	tal design where the exp	erimental units are rand	lomly assigned to the
treatments are	known as		
a) factor block	design	b) random factor des	sign
c) completely i	andomized design	d) none of these	,
81. Reports prese	nt conclusion based on		
a) intuition	b) impression	c) investigati	on d) belief
82. It is in this se	ction that you fully inter	pret and evaluate your i	results.
a) introduction	b) method	c) result	d) discussion
83. Which of the	following abbreviations	can be used in a research	ch report?
a) IQ	b) sec. for second	c) yr. for yea	r d) mo. for month
84. Patent applica	ation can be filed in India	a by	
a) True and Fin	est Inventor	b) Assignee	of the inventor
c) Legal repres	entative of the inventor	d) All the abo	ove
85. Summary of a	n effective technical doc	ument, excluded;	
a) Definition	S	b) main idea	
c) introduction	sentence	d) title	
86. Largest section	on of report in technical	writing, termed as:	
a) conclusion/	recommendation	b) discussion	l
c) heading		d) footing	

87. Patent is a form of				
a) Tangible Property		b) Inte	llectual Property	
c) Industrial property		d) Bot	h (b) and (c)	
88. Patent right is				
a) Exclusive right	b) Natural rig	ght	c) Property right	d) Both (a) and (c
89. Series of positions tha	t a person occupi	ies throu	ghout life regarding	job is classified as
a) organization plannin	g	b) care	eers	
c) career planning		d) lear	ning plans	
90. Which government is	empowered to pr	rovide le	gislation for patents	in India?
a) Central governmen	t	b) state	e government	0
c) both		d) loca	al bodies	
91. Exclusive right over p	atent is limited for	or a peri	od upto	
a) 20 years	b) life time		c) 100 years	d) 10 years
92. Patents act, 1970 is ap	plicable to		.5	
b) Whole of India		b) who	ole of India except Ja	ammu
c) Whole of India excep	ot Sikkim	d) Wh	ole of India except (Goa
86. DST expands as		10		
b) Department of Scien	ce and Technolo	gy		
c) Division of Science	and Technology			
d) Development of Scientific	ence and Technol	logy		
e) None of the above				
86. Funding of project pro	posal is done by	conside	ring	
c) Novelty			c) repetition	d) both a) and b)
86. Which research refers	to scientific stud	ly and se	eks to address pract	ical problems ?
b) Basic research		b) app	lied research	
c) exploratory research		d) all t	he above	
86. Hypothesis refers to				
d) Outcome of an exper	riment	b) Cor	clusion drawn from	an experiment
c) A form of bias		d) A te	entative statement ab	out the relationship

97. Which is the characteris	tic of research?		
a) Data are collected syste	ematically	b) Data are interpreted syste	ematically
c) There is a clear purpose	e to find out thi	ngs d) All the above	
98. All of these may appear	in a research p	roposal, but which will appea	ar always?
b) Business objective		b) Research objective	
c) Creative objective		d) Marketing objective	
99. The report is not			
c) A basis for decision ma	aking	b) Tangible evidence of a re	esearch report
c) Future secondary data		d) Research proposal	
100. Graph which shows cha	inges over a spe	ecific time period is called	0
a) meridian graph	b) pie graph	c) line graph	d) bar graph

SECTION – B

- 1) List the functions of statistics.
- 2) What is histogram? How do you construct it?
- 3) State the essential characteristics of a good table.
- 4) Describe the types of classification of data
- 5) Write a short note on frequency curve and Ogive.
- 6) The following data relate to the monthly expenditure (In Rs.) of two families A and B.

	Expenditure			
Items of Expenditure	Family A	Family B		
Food	1600	1200		
Clothing	800	600		
Rent	600	500		
Light and fuel	200	100		
Miscellaneous	800	600		

Represent the above data by a suitable percentage diagram.

- 7) Add short notes on types of data.
- 8) How data is collected through mailed questionnaire method?
- 9) What are the sources of secondary data?
- 10) Describe the types of table.
- 11) From the following data compute arithmetic mean.

Marks	0-10 10-20	20-30	30-40	40-50	50-60
No. of Students	5 10	25	30	20	10

- 12) Blood serum cholesterol levels of 10 persons are as under:
 - 240, 260, 290, 245, 255, 288, 272, 263, 277, 251.
 - Calculate standard deviation with the help of assumed mean.
- 13) Add short notes of measures of variation.
- 14) Define the following: i) quartile ii) decile iii) percentile iv) range
- A contractor employs three types of workers- male, female and children. To a male he pays Rs. 200 per day, to a female worker Rs.150 per day and to a child worker Rs.85 per day. What is the average wage per day paid by the contractor?
- 16) Calculate the median for the following frequency distribution

Marks	45-50	40-45	35-40	30-35	25-30	20-25	15-20	10-15	5-10
No. of students	10	15	26	30	42	31	24	15	7

17) Calculate the lower and upper quartiles, third decile and 20th percentile from the following data.

Central value	2.5	7.5	12.5	17.5	22.2
Frequency	7	18	25	30	20

18) Compute coefficient of quartile deviation from the following data.

Marks	10	20	30	40	50	60
No. of students	4	7	15	8	7	2

19) Find the standard deviation from the following data.

Age under	10	20	30	40	50	60	70	80
No. of persons dying	15	30	53	75	100	110	115	125

- 20) Describe the scatter diagram method for studying correlation.
- 21) What are the properties of normal curve?
- 22) Write short notes on types of events.
- 23) Define probability and explain the laws of addition and multiplication in probability.
- 24) What is poisson distribution? Point out its rule.
- 25) Define mutually exclusive event, independent event and impossible events in probability.
- 26) The incidence of a certain disease is such that on the average 20% of workers suffer from it. If 10 workers are selected at random, find the probability that
 - (i) exactly 2 workers suffer from the disease
 - (ii) not more than 2 workers suffer from the disease.
- 27) The number of defects per unit in a sample of 330 units of manufactured product was found as follows.

No. of defects: 0 1 2 3 4 No. of units: 214 92 20 3 1

Fit a Poisson distribution to the data and test for goodness of fit. (Given $e^{-0.439} = 0.6447$)

- 28) A problem in statistics is given to 5 students A, B, C, D and E. Their chances of solving it are 1/2, 1/3, 1/4, 1/5 and 1/6. What is the probability that the problem will be solved?
- 29) Assume the mean height of soldiers to be 68.22 inches with a variance of 10.8 inches. How many soldiers in a regiment of 1000 would you expect is be over six feet tall?
- 30) A bag contains 10 white and 6 black balls.4 balls are successively drawn out and not replaced. What is the probability that they are alternately of different colours?
- 31) What is students 't' test? Explain its uses.
- 32) What is analysis of variance? Explain clearly the technique of variance for data with one-way classification.
- 33) Explain completely randomized design.
- 34) Describe the uses of chi-square test.
- 35) What are the advantages of a completely randomized experimental design?

- 36) Outline the steps involved in testing of statistical hypothesis.
- 37) In a sample of 500 people from a village in Tamilnadu, 280 are found to be rice eaters and the rest wheat eaters. Can we assume that both the food articles are equally popular?
- 38) Intelligence test on two groups of boys and girls gave the following results.

	Mean	S.D	N
Girls	75	15	150
Boys	70	20	250

Is there a significant difference in the mean scores obtained by boys and girls?

- 39) A coin was tossed 400 times and the head turned up 216 times. Test the hypothesis that the coin is unbiased.
- 40) A machine produced 20 defective articles in a batch of 400. After overhauling it produced 10 defectives in a batch of 300. Has the machine improved?
- 41) What are the components of the title page of a research paper?
- 42) Outline the steps involved in preparation of a manuscript.
- 43) Add notes on Displaying data tables, graphs and charts.
- 44) Comment on the role of hypothesis testing in a research report.
- 45) What is a patent? Write about the Indian Patent Act.
- 46) How to frame a study design?
- 47) Write about any two Indian funding agencies.
- 48) What are the steps involved in Publication of a research paper?
- 49) Add short notes on research opportunities in India.
- 50) List the steps involved in patent filing and granting.

SECTION - C

- 1) Explain the methods of collecting primary data.
- 2) Describe the classification of data.
- 3) Discuss on planning and execution of a statistical survey.
- 4) Give the different kinds of diagram. Explain with suitable examples.
- 5) What is a questionnaire? What are the characteristics of a good questionnaire?
- 6) Explain the important functions of statistics in science.
- 7) For a frequency distribution draw a histogram, frequency polygon and cumulative frequency curve.

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of Students	3	10	17	19	21	16	12	4

- 8) Explain the parts of a table.
- 9) Draw a pie diagram for the following data of sixth five-year plan public sector outlays.

Agriculture and rural developme	nt 12.9%
Irrigation, etc.	12.5%
Energy	27.2%
Industry and Minerals	15.4%
Transport, communication etc.	15.9%
Social services and others	16.1%

10) Present the following information in a suitable tabular form.

In 2005, out of a total of 1750 workers of a factory, 1200 were members of a trade union. The number of women employees was 200 of which 175 did not belong to trade union. In 2010 the number of union workers increased to 1580 of which 1290 were men. On the other hand, the number of non-union workers fell down to 208 of which 180 were men. In 2015, there were 1800 employees who belonged to a trade union and 50 who did not belong to a trade union. Of all the employees in 2015, 300 were women of whom only 8 did not belong to a trade union.

- 11) Define correlation analysis. Give the classification of Correlation.
- 12) The following table shows the ages (X) and blood pressure (Y) of 8 persons.

X	52	63	45	36	72	65	47	25
Y	62	53	51	25	79	43	60	33

Obtain the regression equation of Y on X and find the expected blood pressure of a person who is 49 years old.

13) Calculate arithmetic mean, median and mode from the following distribution.

Variable	Frequency	Variable	Frequency
10-13	8	25-28	54
13-16	15	28-31	36
16-19	27	31-34	18
19-22	51	34-37	9
22-25	75	37-40	7

14) Calculate mean and standard deviation of the following frequency distribution of marks.

Marks	No. of Students	Marks	No. of Students
0-10	5	40-50	50
10-20	12	50-60	37
20-30	30	60-70	21
30-40	45		

15) Calculate coefficient of correlation from the following data using Karl Pearson's method.

X	100	200	300	400	500	600	700
Y	30	50	60	80	100	110	130

16) Calculate the coefficient of correlation from the following data by the Spearman's correlation coefficient method.

Price of Tea (Rs.)	Price of Coffee (Rs.)	Price of Tea (Rs.)	Price of Coffee (Rs.)
75	120	60	110
88	134	80	140
95	150	81	142
70	115	50	100

17) Calculate the coefficient of correlation between X and Y from the following data and calculate probable error. Assume 69 and 112 as the mean value for X and Y respectively.

X 78	89	99	60	59	79	68	61
Y 125	137	156	112	107	136	123	108

18) Obtain regression equation of Y on X and estimate Y when X=55 from the following.

X	40	50	38	60	65	50	35
Y	38	60	55	70	60	48	30

19) Find the median and mean deviation of the following data:

Size	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	7	12	18	25	16	14	8

20) An incomplete distribution is given below

Variable	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	10	20	?	40	?	25	15

i)You are given that the median value is 35. Find out the missing frequency (given the total frequency is 170)

- ii) Calculate the arithmetic mean of the completed table.
- 21) Explain the types of events in probability with examples.
- 22) Explain the following: i) Binomial distribution ii) Poisson distribution
- Assume that a factory has two machines. Past records show that machine 1 produces 30% of the items of output and machine 2 produces 70% of the items. Further, 5% of the items produce by the machine 1 were defective and only 1% produced by machine 2 were defective. If a defective item is drawn at random, what is the probability that the defective item was produced by machine 1 or machine 2?
- 24) Eight coins are tossed at a time 256 times. Number of heads observed at each throw is recorded and the results are given below. Find the expected frequencies. What are the theoretical values of mean and standard deviation? Calculate also the mean and S.D of the observed frequencies.

No. of heads at a throw	Frequency	No. of heads at a throw	Frequency
0	2	5	56
1	6	6	32
2	30	7	10
3	52	8	1
4	67		

25) The following mistakes per page were observed in a book.

No. of mistakes per page	0	1	2	3	4
No. of times the mistake occured	211	90	19	5	0

Fit a Poisson distribution to the given data.

26) The number of defects per unit in a sample of 330 units of manufactured product was found as follows.

No. of defects	0	1	2	3	4
No. of units	214	92	20	3	1

Fit a Poisson distribution to the data and test for goodness of fit. (given $e^{-0.439} = 0.6447$)

- 27) In an intelligence test administered to 1000 students the average score was 42 and standard deviation was 24. Find a) the number of students exceeding a score of 50 b) the number of students lying between 30 and 54. c) the value of score exceeded by the top 100 students.
- 28) The customer accounts at a certain departmental store have an average balance of Rs.480 and a standard deviation of Rs.160. Assuming that the account balances are normally distributed.
 - i. What proportion of the accounts is over Rs.600?
 - ii. What proportion of the accounts is between Rs.400 and Rs.600?

- iii. What proportion of the accounts is between Rs.240 and Rs.360?
- 29) Twelve dice were thrown 4096 times. Each 4, 5 or 6 spot appearing was considered to be a success while a 1, 2 or 3 spot was a failure. Calculate the theoretical frequencies for 0,1,2,..., 12 successes.
- 30) A bag contains 5 white and 8 red balls. Two drawings of 3 balls are made such that a) the balls are replaced before the second trial and b) the balls are not replaced before the second trial. Find the probability that the first drawing will give 3 white and second 3 red balls in each case.
- 31) Explain the technique of analysis of variance for a two-way classification.
- 32) Explain the principles of replications and local control and state their role in experimental design.
- 33) Write short notes on i) Duncan's Multiple Range Test ii) Randomized block design
- 34) The following table gives the number of refrigerators sold by 4 salesman in three months May, June and July.

Month	Salesman				
	A	В	·C	D	
May	50	40	48	39	
June	46	48	50	45	
July	39	44	40	39	

Is there a significant difference in the sales made by the four salesman? Is there a significant difference in the sales made during different months?

35) In a certain colony a drug was administered to 456 males out of the total 720 to test its efficacy against typhoid. The incidence of typhoid is shown below. Find the effectiveness of the drug against the disease.

	Fever	No fever
Drug given	144	312
Not given	192	72

$$(V=1, x^2_{0.05}=3.84)$$

36) The life time of electric bulbs for a random sample of 10 from a large consignment gave the following data.

2 3 10 Item: 1 Life in '000 4.2 4.6 3.9 4.1 5.2 3.9 4.3 **Hours:** 3.8 4.4 5.6

Can we accept the hypothesis that the average life time of bulbs is 4000 hours?

37) A controlled experiment was conducted to test the effectiveness of a new drug. Under this experiment 300 patients were treated with new drug and 200 were not treated with the drug. The results of the experiment are given below.

Details	Cured	Condition	No effect	Total
		wor		
		sene d		
Treated with the drug	200	40	60	300
Not treated with the drug	120	30	50	200
Total	320	70	110	500

Use x^2 and comment on the effectiveness of the drug.

The three samples below have been obtained from normal population with equal variances. Test the hypothesis that the sample means are equal.

A	В	C
8	7	12
10	5	9
7	10	13
14	9	12
11	9	14

The table value of F at 5% level of significance for $v_1=2$ and $v_2=12$ is 3.88.

39) From the following data find out whether there is any relationship between sex and preference for colours.

Colour	Male	Female	Total
Green	40	60	100
White	35	25	60
Yellow	25	15	40
Total	100	100	200

40) A company is interested in finding out if there is any difference in the average salary received by managers of two divisions. Accordingly samples of 12 managers in the first division and 10 managers in the second division were selected at random. The results are given below.

	I Division	II Division
Sample size	12	10
Average monthly salary	12500	11200
Standard deviation	320	480

Apply t-test to find out whether there is a significant difference in the average salary.

- 41) Write about the different National funding agencies.
- 42) Describe in detail the principle and method of patenting.
- 43) Elaborate on the preparation of project proposal.
- 44) Explain the components of an effective thesis.

- Brief on Publication in a Scientific Journal.
- Describe the Preparation of abstract and manuscript. 46)
- Elaborate on International funding agencies. 47)
- What are the kinds of research program available in India. 48)
- 49) Discuss on career development in laboratory research.
- What type of research programs are available in abroad? 50)

SECTION – A ANSWER KEY

- 1) b) stages of cancer
- 2) c) presentation
- 3) a) Captions
- 4) a) Pie diagram
- 5) c) three dimensional diagrams
- 6) d) quantitative classification
- 7) a) exclusive method
- 8) d) Simple classification
- 9) c) Geographical classification
- 10) c) Chronological
- 11) a) Discrete frequency distribution
- 12) d) Both (b) and (c)
- 13) b) Secondary data
- 14) b) Continuous frequency distribution
- 15) d) Class limits
- 16) c) Class interval
- 17) b) Tabulation
- 18) d) 360°
- 19) a) Frequency distribution
- 20) c) Both (a) and (b)
- 21) c) deciles
- 22) b) histogram
- 23) a) Linear
- 24) a) 6
- 25) c) mode
- 26) b) 246
- 27) b) asymmetrical distribution
- 28) b) variation

- 29) a) Descriptive
- 30) c) σ
- 31) c) standard deviation
- 32) a) Measures of dispersion
- 33) c) Range
- 34) c) Small
- 35) d) 0
- 36) c) Symmetrical
- 37) b) Regression
- 38) b) Dependent variable
- Biochemis 39) c) Correlation coefficient
- 40) d) Galton
- 41) b) dependent events
- 42) b) np
- 43) b) simple event
- 44) a) binomial
- 45) c) discrete variable
- 46) b) 4
- 47) c) trials
- 48) c) square root of npq
- 49) a) p and q
- 50) a) Gaussian distribution
- 51) c) mutually exclusive events
- 52) a) compound events
- 53) c) Bayes theorem
- 54) d) zero to one
- 55) c) P(Y|Z)
- 56) b) posterior probabilities
- 57) a) 4
- 58) d) dependent events

- 59) d) Poisson distribution
- 60) c) skewness
- 61) d) a plan of experiment
- 62) a) Student's t-test
- 63) a) Agrarian research
- 64) b) randomization
- 65) b) zero
- 66) b) categorical
- 67) d) all the above
- 68) a) x^2
- 69) a) 1
- 70) c) human bias
- 71) c) chi square test
- 72) c) statistical hypothesis
- 73) c) R.A.Fisher
- 74) b) Degree of freedom
- 75) d) All of the above
- 76) a) Hypothesis
- 77) b) T-test
- 78) a) randomize it
- 79) a) test how far the mean of a sample is from zero
- 80) c) completely randomized design
- 81) c) investigation
- 82) d) discussion
- 83) a) IQ
- 84) d) All the above
- 85) a) Definitions
- 86) b) discussion
- 87) d) Both (b) and (c)
- 88) a) Exclusive right

- 89) b) careers
- 90) a) Central government
- 91) a) 20 years
- 92) a) Whole of India
- 93) a) Department of Science and Technology
- 94) d) both a) and b)
- 95) b) applied research
- AASC.Biochemistry (PG) 96) d) A tentative statement about the relationship
- 97) d) All the above
- 98) b) Research objective
- 99) d) Research proposal
- 100) c) line graph

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS),

COIMBATORE - 641029.

DEPARTMENT OF BIOCHEMISTRY (PG AND RESEARCH)

M.Sc BIOCHEMISTRY

QUESTION BANK

ODD SEMESTER (2018-19)
NON-MAJOR ELECTIVE – I
ENVIRONMENTAL TOXICOLOGY (17PBC3N1)

E.P.1 ENVIRONMENTAL TOXICOLOGY

SECTION – A

(Knowledge level K1 Remembering is to be followed in relation to Course Outcomes specified as per bloom's Taxonomy) <u>Choose the correct answer:</u>

1.	. Who is the founder of modern toxicology?			
	a) Paracelsus	b) Robert Brown	c) Landstainer	d) Watson
2.	The word toxicology is deriv	ved from the Greek wor	rd	
	a) Virion	b) Toxicon	c) Toxin	d) Toxic
3.	The example for phycotoxin	is		
	a) Bacteria	b) Fungal	c) Animal	d) Algae
4.	Toxicity is characterized by			
	a) Instability	b) Volume	c) Temperature	d) Dosage
5.	Which are the units of LD ₅₀ ?	?	6	
	a) Milligrams/gram of anima	al body weight	b) Kilogram/gram of	animal body weight
	c) Milligrams/ kilogram of a	nimal body weight	d) Gram/gram of anim	nal body weight
6.	Example for lethal dose cond	centration is		
	a) 100	b) 50	c) 20	d) 75
7.	Major application of dose-re	sponse curve is to obta	in	
	a) Toxin	b) Carcinogenesis	c) Mutagens	d) Threshold
8.	Which of the following term	s is used to describe th	e dose of a drug requir	ed to produce a
	measurable effect in 50% of	the animals tested?		
	a) LD ₅₀	b) LD ₁	c) ED ₅₀	d) ED ₉₉
9.	Which of the following term	s is used to describe th	e dose of a drug requir	ed to kill 50%
	of a group of animals?			
	a) LD ₅₀	b) LD ₁	c) ED ₅₀	d) ED ₉₉
10.	A toxic substance produced	by biological system is	specially referred to a	s
	a) Toxicant	b) Toxin	c) Xenobiotic	d) Poison
11	. Therapeutic index is the			
	a) Ratio of LD ₅₀ to ED ₉₉		b) Ratio of LD ₅₀ to E	D_{50}
	c) Ratio of LD ₁ to LD ₅₀		d) Ratio of ED ₉₉ to E	D_{50}

11.	Which of the following toxic	ity can occur due to sir	ngle exposure?	
	a) Acute toxicity		b) Sub acute toxicity	
	c) Subchronic toxicity		d) Chronic toxicity	
12.	The most common target orga	an of toxicity is the		
	a) Heart	b) Lung	c) CNS	d) Skin
13.	The LD50 is calculated from	ı		
	a) A quantal dose-response c	urve	b) A hormesis dose –	response curve
	c) A graded dose-response cu	irve	d) A log-log dose-res	ponse curve
14.	A U-shaped graded toxicity d	lose-response curve is	seen in humans with	
	a) Pesticides	b) Sedatives	c) Opiates	d) Vitamins
15.	The TD1 / ED99 is called			
	a) Margin of safety	b) Therapeutic index	c) Potency ratio	d) Efficacy ratio
16.	All of the following are reaso	ons for selective toxicit	y except	
	a) Transport differences between	reen cell	9	
	b) Biochemical differences be	etween cell	•	
	c) Cytology of male neurons	versus female neurons		
	d) Cytology of plant cells ver	sus animal cells		
17.	The LD50 is best described a	as which of the following	ng	
	a) The dose at which 50 % of	all test animals die		
	b) The dose at which 50 % of	the animals demonstr	ate a response to the cl	hemical
	c) The dose at which all of the	e test animals die		
	d) The dose at which at least	one of the test animals	dies	
18.	The effective dose is best des	cribed as which of the	following:	
	a) The dose at which 50 % of	all test animals die		
	b) The dose at which some of	the animals demonstr	ate a response to the cl	hemical
	c) The dose at which all of the	e animals demonstrate	a response to the cher	nical
	d) The dose at which 50 % of	all test animals demon	nstrate a response to th	e chemical
19.	The most important factor that	at determine chemical	toxicity is	
	a) Potency		b) Partition coefficier	nt
	c) Dose		d) pH of the environm	nent

20.	Pest used to control plant pes	t is called					
	a) Fungicides	b) Herbicides	c) Toxicols	d) Weed agents			
21.	21. Pesticides designed to kill birds are called						
	a) Aviacides	b) Miticides	c) Herbicides	d) Birdicides			
22.	Which of the following piece	es of information is not	usually found on	a pesticide label?			
	a) Product name	b) Directions for use	c) Cost	d) Caution			
23.	23. The use of legislative restriction to control pests is called						
	a) Plant protection	b) Plant law	c) Plant quarantii	ne d) Plant enclosure			
24.	Insecticides that act by perme	eating the entire plant a	are said to be				
	a) Porous insecticides		b) Systemic inse	cticides			
	c) Contact poisons		d) Penetrating pe	esticides			
25.	The compound responsible for	or the killing action of	pesticides is called	d			
	a) Lethal factor	b) Toxic factor	c) Active ingredi	ent d) Killing agent			
26.	Pest control by changing crop	spacing including cro	p rotation, prunin	g and weeding are part of			
	the method of		•				
	a) Cultural control		b) Biological cor	ntrol			
	c) Mechanical control		d) Chemical con	trol			
27.	The agent that cause mutation	n is called as					
	a) Carcinogen	b) Mutagen	c) Teratogen	d) Clastogen			
28.	. The process of transfer of me		ic compounds to r	netals is called			
	a) Bioaccumulation	b) Biomethylation	c) Biomagnificat	ion d) Bioethylation			
29.	. Cadmium is excreted in urine	e in the form of					
	a) Cd-protein	b) Cd-cysteine	c) Cd-MT d) Cd-glutathione			
30.	The melting point of alumini	um is					
	a) 660°C	b) 500°C	c) 200°C d)	900°C			
31.	Aluminium oxide is obtained	from					
	a) Sodium sulphate	b) Bauxite	c) Calcium d)	Chloride			
32.	Arsenic combine with oxygen	n to form					
	a) Arsenic acid	b) Arsenous acid	c) Arsenic oxide	d) Arsonalite			
33.	Arsenic is absorbed in						
	a) GI tract	b) Liver	c) Kidney	d) Pancreas			

34.	34. The drug used to remove cadmium toxicity is					
	a) Paracetamil	b) Doxorubicin	c) Renamide	d) Aceclofenac		
35.	35. Chromium is react with hot sulphuric acid to produce					
	a) Chromic oxide	b) Chromous salts	c) Halides	d) Chromium sulphate		
36.	Lead is extracted from					
	a) Bauxite	b) Galena	c) Alumina	d) Arsenic oxide		
37.	Lead is absorbed in					
	a) Respiratory tract	b) Intestine	c) GI tract	d) Liver		
38.	The example for chelating ag	gent is				
	a) NaOH	b) KOH	c) EDTA	d) AlO ₃		
39.	The toxic substance present i	n shampoo is				
	a) Triclosan	b) Formaldehyde	c) Parabens	d) Glycols		
40.	The major detoxification read	ction involved in phase	e I except			
	a) Oxidation	b) Reduction	c) Hydrolysis	d) Acetylation		
41.	The chlorinated organic com	pound present in refrig	erator is			
	a) Chlorinated flurocarbons		b) Chlorinated	d hydrocarbons		
	c) Carbon tetrachloride		d) Perchloroet	thylene		
42.	Most xenobiotics are	0				
	a) Absorbed in the stomach		b) Excreted in expired	d air		
	c) Metabolized in the liver	7	d) Distributed via lyn	nphatics		
43.	Smaller molecule xenobiotic	s include				
	a) Industrial pollutants	b) Pharmaceuticals	c) Pesticides	d) All the above		
44.	Which organ is used for deto	xification reaction?				
	a) Brain	b) Kidney	c) Liver	d) Skin		
45.	The extent to which a materia	al is found in organism	tissue compared with	background		
	levels is known as:					
	a) Contaminant	b) Bioconcentration	c) Bioaccumulation	d) Toxic		
46.	Which of the following react	ions is not a Phase I m	etabolic transformation	n?		
	a) Ketone reduction		b) Conjugation to alc	ohols		
	c) Oxidation of alkyl groups		d) Ester hydrolysis			

47	7. The decomposition of organic material by microorganisms is called					
	a) Biomagnification	b) Bioremediation	c) Biodegradation	d) Bioconcentration		
48	. The biological waste cannot	recycled by microbes i	s called as			
	a) Biodegradation		b) Non biodegradable	;		
	c) Biofertilization		d) Bioaugumentation			
49	. Which of the following is a b	oiodegradable substanc	e?			
	a) Glass	b) Plants	c) Plastics	d) Polythene		
50	. Which of the following is a r	non-biodegradable subs	stance?			
	a) Virgin plastic	b) Plants	c) Plastics	d) Plant producers		
51.	. The common indicator organ	ism of water pollution	is			
	a) E. histolytica	b) E. coli	c) E. crassipes	d) L. paucicostata		
52	. The route of exposure of PC	B for children is				
	a) Breast milk	b) Air	c) Water	d) Soil		
53.	. Acute high dose exposure to	PCBs resulted in	9			
	a) Dizziness	b) Ataxia	c) Nausea	d) Chloracne		
54.	. Chronic PCBs exposure has	been associated with				
	a) Ataxia	b) Low birth rate	c) Acneiform	d) Dizziness		
55.	. The type of cancer is due to	PCB is				
	a) Lung	b) Kidney	c) Liver	d) Skin		
56	. Toxaphene was banned in th	e year of				
	a) 1920	b) 1990	c) 1980	d) 2005		
57.	. Chronic exposure of toxaph	Chronic exposure of toxaphene leads to				
	a) Liver toxicity		b) Eye toxicity			
	c) Respiratory toxicity		d) Skin toxicity			
58.	. The measurement of the bod	y burden of toxic chem	nical compounds, eleme	ents, or their		
	metabolites, in biological sub	ostances				
	a) Biomonitor		b) Bioindicator			
	c) Bioaugumentation		d) Biofertilization			

59.	Bioindicators are also know	vn as			
	a) Biomonitor		b) Ecological indicate	or	
	c) Biofertilizers		d) Biomagnifiers		
60.	When an organism accumu	lates a material in its bo	dy at a concentration g	reater than the	
	environment is called				
	a) Chemomagnification	b) Bioaccumulation	c) Biomagnification	d) Photosynthesis	
61.	The process of the concent	ration of a poison increa	sing as you move up th	ne food web is known as	
	a) Diffusion	b) Bioaccumulation	c) Biomagnification	d) Chemomagnification	
62.	The occurrence of pesticide	es like DDT in higher tro	opic level is called		
	a) Bioremediation	b) Biomagnification	c) Biopollution	d) Bioevaluation	
63.	The extent to which a mate	erial is found in organism	n tissue compared with	background	
	levels is known as				
	a) Contaminant	b) Bioaccumulation	c) Toxic	d) Bioconcentration	
64.	64. Biomagnification implies				
	a) Food is magnified		b) Light is magnified		
	c) Toxic matters are magni	fied	d) Living beings are i	magnified	
65.	Biomagnification is caused	l mainly by			
	a) Organochlorines	b) Neem oil	c) Organophosphates	d) Acetate	
66.	DDT is the				
	a) Green house gas		b) Degradable polluta	ant	
	c) Non degradable pollutar	nt	d) Polymer		
67.	Increase in the concentration	on of pollutants in higher	r trophic levels is know	n as	
	a) Biomagnification	b) Biodegradation	c) Eutrophication	d) Recycling	
68.	Cell surface receptors may	be any of the following	except		
	a) G protein linked				
	b) Enzymic receptors				
	c) Single-pass transmembra	ane proteins for neurotra	insmitters		
	d) Chemically-gated ion ch	annels			
69.	The example of intracellul	ar receptor is			
	a) IP ₃ receptor b) In	sulin receptor	c) Glucagon receptor	d) Thyroid hormone	

70.	0. Receptors that are recognized by the immune system except					
	a) Immunoglobulins	b) Steroid receptor	c) T receptor	d) B receptor		
71.	1. Which of the following is not a G-protein coupled receptor?					
	a) Glycine receptor	b) Adrenergic receptor	c) Glutamate recept	tor d) Muscarinic receptor		
72.	A hormone or ligand	can be considered as				
	a) First messenger	b) Second messenger	c) Third messenger	d) Fourth messenger		
73.	73. GPCR is comprised of					
	a) 8 transmembrane h	elices	b) 6 transmembrane	e helices messenger		
	c) 7 transmembrane h	elices	d) 2 transmembrane	e helices		
74.	Which of the following	ng is an active cell death pr	rocess?			
	a) Apoptosis	b) Necrosis	c) Senescence	d) Lysis		
75.		ng is the inhibitor of apopto				
	a) Caspase	b) IAP	c) SMAC	d) DIABLO		
76.	Caspase can be activa					
	a) Cytochrome	b) DNase	c) RNase	d) IAP		
77.	Which of the following	ng in not considered an ada	nptive response?			
	a) Atrophy	b) Hyperplasia	c) Dysplasia	d) Metaplasia		
78.	All of the following a	re features of apoptosis ex	cept			
	a) Cell shrinkage		b) No associated in	flammation		
	c) Intact cellular com	ponents	d) Karyolysis			
79.	Number of cells that a	are destroyed in adults by a	apoptosis are			
	a) 20 to 35 billion cel	ls	b) 50 to 70 billion of	eells		
	c) 10 to 20 billion cel	ls	d) 15 to 25 billion of	cells		
81.	Which of the following	ng is not Phase-I reaction?				
	a) Oxidation	b) Reduction	c) Hydrolysis	d) Conjugation		
82.	The main enzyme res	ponsible for activation of x	kenobiotics is			
	a) Cytochrome P-450		b) Glutathione S-tra	ansferase		
	c) NADPH cytochron	ne P-450-reductase	d) Glucuronyl trans	ferase		
83.	What is metabolized	like xenobiotics?				
	a) Myoglobin		b) Bilirubin			
	c) Biliverdin		d) Hemoglobin			
		7				

84.	A toxic substance produced	by biological s	ystem is specially referr	ed to as a
	a) toxicant	b) toxin	c) xenobiotic	d) poison
85.	Which of the following toxic	ity can occur d	ue to single exposure?	
	a) Acute toxicity		b) Sub-acute toxicity	
	c) Sub-chronic toxicity		d) Chronic toxicity	
86.	The most rapid exposure to a	chemical wou	ld occur through which	of the following
	routes?			
	a) oral		b) subcutaneous	
	c) inhalation		d) intramuscular	
87.	The LD_{50} is calculated from			
	a) a quantal dose-response cu	irve	b) a hormesis dose –re	sponse curve
	c) a graded dose-response cur	rve	d) a log-log dose-respo	onse curve
88.	. In the Ecological Risk Assessment process, data gathering occurs in which step(s)			
	a) Problem formulation			
	b) Problem Formulation and	Analysis		
	c) Analysis and Risk Charact	erization		
	d) Problem Formulation, Ana	alysis, and Risl	Characterization	
89.	Small molecular weight xeno	biotics are abs	orbed through the skin b	y
	a) phagocytosis		b) diffusion	
	c) oxidation		d) all the above	
90.	Toxicokinetics is the study of	f the physiolog	ical processes associated	d with
	a) Effect of toxins on tissues		b) Oxidative stress	
	c) Cellular respiration		d) Movement of toxins	in the body
91.	Most xenobiotics are			
	a) absorbed in the stomach		b) excreted in the expir	red sir
	c) metabolized in the liver		d) all the above	

92.	What is the aim of animal we	lfare act?		
;	a) to ensure that animals lead	health and happy life.		
1	b) to help animals in need.			
(c) to provide support for pet of	owners.		
(d) to get people into trouble.			
93.	Which of the following toxic	city can occur due to si	ingle exposure?	
	a) Acute	b) Subacute	c) Subchronic	d) Chronic
94.	Hazard estimation in ecotoxi	icology is done based of	on	
	a) Accumulation	b) Bioaccumulation	c) SARA	d) HWL
95.	The xenobiotics are excreted	l via	10	
	a) Urine	b) Bile	c) Sweat	d) Blood
96.	The evaluation of environme	ental condition through	the use of living orga	nisms is called
	a) biomonitoring b) biomagr	nification c) bioaccum	ulation d) bioconcentra	ation
97.	The LD ₅₀ is best described a	s which of the following	ng:	
	a) the dose at which 50 % of	f all test animals die		
	b) the dose at which 50 % of	f the animals demonstr	rate a response to the c	hemical
	c) the dose at which all of th	e test animals die		
	d) the dose at which at least	one of the test animals	s dies	
98.	Extrapolation is best describ	ped as which of the fol	lowing:	
	a) using known information	to reach a conclusion.		
	b) using known information	to infer something abo	out the unknown.	
	c) using speculative informa	ation to infer something	g about the known.	
	d) a "best guess" approach.			
99.	A concentration of 0.01 % is	s equivalent to how ma	any parts per million (p	opm)?
	a) 1 ppm	b) 10 ppm	c) 100 ppm	d) 1000 ppm
100	. Which of the following is a	direct toxic mechanism	n?	
	a) Binding of the poison to o	cellular protein.	b) Inhibition of an en	zyme.
	c) Burning of the skin by a n	nineral acid.	d) Formation of a tox	tic metabolites.

SECTION - B

- 1. Write short note on toxicology.
- 2. Give an account on probit analysis.
- 3. Write a note on LD_{50} and LC_{50} .
- 4. Explain dose response curve.
- 5. Explain the nature of toxicants in environment.
- 6. Define acute toxicity.
- 7. Explain sub-acute toxicity.
- 8. Describe about chronic toxicity.
- 9. Give a note on concentration response relationship.
- 10. Explain the biological factors that influence dose response relationship.
- 11. What are objectives involved in pest surveillance?
- 12. Add a note on pest and pesticides.
- 13. Write a note on toxic effects of insecticides towards man and mammals.
- 14. How cadmium is metabolized in human beings?
- 15. Explain mutagenesis with examples.
- 16. Describe on production of mercury.
- 17. Give an account on carcinogenesis.
- 18. How arsenic is metabolized in living beings?
- 19. List down the physical and chemical properties of lead.
- 20. Explain any two personal care products that cause environmental pollution.
- 21. Write a note on biological degradation.
- 22. Explain bioconcentration with examples.
- 23. Give an account on volatilization.
- 24. Write short note on detoxification.
- 25. Write a note on toxicity of short chain chlorinated hydrocarbons.
- 26. Give a note on environmental specimen banking.
- 27. Write a note on non-biological degradation.

- 28. What is PCB? Write about PCB toxicity.
- 29. Write a note on biomonitor.
- 30. Explain the occurrence of toxaphene.
- 31. Write a note on bioaccumulation.
- 32. Add a note on biomagnification.
- 33. Write about bioconcentration.
- 34. Summarize about mechanism of bioconcentration.
- 35. Explain the mechanism of biota.
- 36. Explain the role of soil invertebrates.
- 37. Give an account cell surface receptors.
- 38. Write a note on avian species.
- 39. What is apoptosis? Explain its mechanism.
- 40. Give a note on impact of chemicals in aquatic specices.
- 41. Write notes on cytochrome P450 system.
- 42. Add short notes on the mode of action of xenobiotics.
- 43. Write on the Phase I biotransformation reactions.
- 44. Brief on fugacity models.
- 45. Describe the algal toxicity testing methods.
- 46. List the applications of multimedia models.
- 47. Comment on animal extrapolation.
- 48. What are the ethical practices to be followed by a researcher?
- 49. What do you mean by alternative toxicity testing methods?
- 50. How are the experimental animals managed during toxicological evaluation?

SECTION - C

- 1. Briefly explain the classification of environmental toxicants.
- 2. Summarize the origin and nature of toxicants in environment.
- 3. Enumerate on probit analysis with examples.
- 4. Explain acute, sub-acute and chronic toxicity.
- 5. Give a brief account on different route of drug administration.
- 6. Describe the laboratory determination of toxicity of chemicals.
- 7. Enumerate briefly on dose response relationship. Explain with its graph.
- 8. Explain briefly on factors that influence dose response relationship.
- 9. Describe the scientific basis of selective toxicity.
- 10. What is selective toxicity? Briefly summarize the advantages of selective toxicity.
- 11. What is pesticides and explain its classification
- 12. Elaborate on toxicity, production, metabolism, toxicology and therapy of aluminium.
- 13. Give a brief account on mercuric toxicity.
- 14. Describe the toxicity, production and metabolism of arsenic.
- 15. Enumerate briefly on toxicity, properties and production of cadmium.
- 16. Write a brief account on toxicity, production, metabolism and industrial uses of chromium.
- 17. Give a brief note on toxicity, production and metabolism of lead.
- 18. Explain how pharmaceuticals products will emerged in environment?
- 19. Briefly explain how personal care products pollutants will emerged in environment?
- 20. Describe any three case studies of carcinogenesis.
- 21. Briefly explain the chlorinated xenobiotics in environment.
- 22. Describe the toxicity of short chain chlorinated hydrocarbons.
- 23. Enumerate on biological and non-biological degradation.
- 24. Explain about occurrence and degradation of toxaphene.
- 25. Give a brief account on dioxins level, fate, toxicity of PCB.
- 26. What are bioindicators? Briefly explain its classification.

- 27. Summarize about phase I and II detoxification reaction.
- 28. Breifly explain the types of biodegradable products.
- 29. How microbes, plants and animals used as bioindicators? Explain
- 30. Elaborate in environmental specimen banking.
- 31. Describe in detail note on biomagnifications with examples
- 32. Enumerate on bioaccumulation and bioconcentration with examples.
- 33. Elaborate the intracellular fate of chemicals.
- 34. Briefly explain the mechanism and kinetics of bioconcentration.
- 35. Give a brief account on intrinsic apoptotic pathway.
- 36. Briefly explain the impact of chemicals in soil vertebrates.
- 37. How the cells are responding to chemical stress? Explain briefly.
- 38. Describe the impact of chemicals on avian species.
- 39. Summarize extrinsic apoptotic pathway.
- 40. Write about the impact of chemicals on living environment.
- 41. Elaborate on biotransformation of xenobiotics.
- 42. Describe the microbial toxicity testing methods.
- 43. Discuss about the multimedia mass balance models.
- 44. Discuss on legislative perspectives in ecotoxicology.
- 45. Explain about the animal management in toxicological evaluation.
- 46. Describe animal ethics in detail.
- 47. Discuss the toxicity testing methods for invertebrates.
- 48. Give an account on fugacity models.
- 49. Write about the enzymes involved in the biotransformation of xenobiotics.
- 50. Explain the future test strategies in ecotoxicology.

SECTION - A

ANSWER KEY

- 1. a) Paracelsus
- 2. b) Toxicon
- 3. d) Algae
- 4. d) Dosage
- 5. c) Milligrams/ kilogram of animal body weight
- 6. b) 50
- 7. d) Threshold
- 8. c) ED₅₀
- 9. a) LD₅₀
- 10. b) Toxin
- 11. b) Ratio of LD₅₀ to ED₅₀
- 12. a) Acute toxicity
- 13. c) CNS
- 14. a) A quantal dose-response curve
- 15. d) Vitamins
- 16. a) Margin of safety
- 17. c) Cytology of male neurons versus female neurons
- 18. a) The dose at which 50 % of all test animals die
- 19. d) The dose at which 50 % of all test animals demonstrate a response to the chemical
- 20. c) Dose
- 21. b) Herbicides
- 22. a) Aviacides
- 23. c) Cost
- 24. c) Plant quarantine
- 25. b) Systemic insecticides
- 26. c) Active ingredient
- 27. a) Cultural control
- 28. b) Mutagen

- 29. b) Biomethylation
- 30. c) Cd-MT
- 31. a) 660°C
- 32. b) Bauxite
- 33. c) Arsenic oxide
- 34. a) GI tract
- 35. c) Renamide
- 36. d) Chromium sulphate
- 37. b) Galena
- 38. a) Respiratory tract
- 39. c) EDTA
- 40. c) Parabens
- 41. d) Acetylation
- 42. a) Chlorinated flurocarbons
- 43. c) Metabolized in the liver
- 44. d) All the above
- 45. c) Liver
- 46. b) Bioconcentration
- 47. b) Conjugation to alcohols
- 48. c) Biodegradation
- 49. b) Non biodegradable
- 50. b) Plants
- 51. c) Plastics
- 52. b) E. coli
- 53. a) Breast milk
- 54. d) Chloracne
- 55. b) Low birth rate
- 56. c) Liver
- 57. b) 1990
- 58. c) Respiratory toxicity

- 59. a) Biomonitor
- 60. b) Ecological indicator
- 61. b) Bioaccumulation
- 62. c) Biomagnification
- 63. b) Biomagnification
- 64. d) Bioconcentration
- 65. c) Toxic matters are magnified
- 66. a) Organochlorines
- 67. c) Non degradable pollutant
- 68. a) Biomagnification
- .nitte. 69. c) Single-pass transmembrane proteins for neurotransmitters
- 70. d) Thyroid hormone
- 71. b) Steroid receptor
- 72. a) Glycine receptor
- 73. a) First messenger
- 74. c) 7 transmembrane helices
- 75. a) Apoptosis
- 76. b) IAP
- 77. a) Cytochrome
- 78. c) Dysplasia
- 79. d) Karyolysis
- 80. b) 50 to 70 billion cells
- 81. d) Conjugation
- 82. a) Cytochrome P-450
- 83. b) Bilirubin
- 84. b) toxin
- 85. a) Acute toxicity
- 86. c) inhalation
- 87. a) a quantal dose-response curve
- 88. d) Problem Formulation, Analysis, and Risk Characterization

- 89. b) diffusion
- 90. d) Movement of toxins in the body
- 91. c) metabolized in the liver
- 92. a) to ensure that animals lead health and happy life.
- 93. a) Acute
- 94. b) Bioaccumulation
- 95. a) Urine
- 96. d) bioconcentration
- 97. a) the dose at which 50 % of all test animals die
- 98. b) using known information to infer something about the unknown.
- 99. c) 100 ppm
- 100. a) Binding of the poison to cellular protein.