KONGUNADUARTSANDSCIENCECOLLEGE (AUTONOMOUS) COIMBATORE-641029

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (UG)

Certificate Programme

in

Artificial Intelligence and Machine Learning

CURRICULUM AND SCHEME OF EXAMINATIONS (2025 - 2026 onwards)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Vision:

To produce world class leaders in artificial Intelligence and Machine Learning through Excellence in education and research and build an ecosystem to contribute significantly to the society.

Mission:

The Department of Artificial Intelligence and Machine Learning is committed to:

- Impart rigorous training to generate knowledge through the state-of-the-art concepts and technologies in Artificial Intelligence and Machine Learning.
- Initiate, sustain and nourish research groups in Artificial Intelligence.
- Establish centers of excellence in leading areas of computing and Artificial Intelligence.
- Transform the Department of Artificial Intelligence and Machine Learning as a leader in imparting Artificial Intelligence and Machine Learning education and research.
- To motivate the learner community for exploiting the potential of start-ups and innovations in this area and connecting them with the real-life problems of industry.

PROGRAMMEOUTCOME (PO)

- **PO1** To Understand the meaning, purpose, scope, stages, applications, and effects of AI.
- **PO2** To analyze and understand machine learning concepts and range of problems that can be handled by machine learning.
- PO3 To develop various real time applications using latest technologies and programming languages.
- **PO4** To understand concept of knowledge representation and predicate logic and transform the real-life information in different representation.
- PO5 To implement deep learning algorithms, understand neural networks and traverse the layers of data abstraction which will empower you to understand data like never before.

PROGRAMMESPECIFIC OUTCOME (PSO)

On successful completion of this programme you will have knowledge and understanding of:

- **PSO1** An ability to apply scientific and technological principles underlying of Artificial Intelligence.
- **PSO2** An ability to apply current techniques, skills, Specialist tools and techniques used to design, analyze, implement and verify AI systems.
- **PSO3** An ability to apply design and develo principles in the construction of software systems of varying complexity.
- **PSO4** An ability to use knowledge in various domains to identify real world problems and hence to provide solution to new ideas and innovations.
- **PSO5** Use different machine learning techniques to design AI machine and enveloping applications for real world problems.

KONGUNADU ARTS AND SCIENCECOLLEGE [Autonomous] COIMBATORE - 641 029.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

CERTIFICATE PROGRAMME IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

CURRICULUM & SCHEME OF EXAMINATION

Duration: (Six Months)

[APPLICABLE TO THE STUDENTS ADMITTED DURING THE ACADEMIC YEAR 2025-2026 ONWARDS]

			uo	cle	Exam.Marks		of s)	70	
	Subject code Title of the Paper		Instruction	Hours/Cycle	CIA	ESE	Total	Duration of Exam(hrs)	Credits
ster	25CAI101	Core Paper 1 - Python with Data Science		3	25	75	100	3	2
Semester	25CAI102	Core Paper 2 - Artificial Intelligence and Machine Learning		3	25	75	100	3	2
	25CAI1CL	Core Practical 1 – Python With Data Science Lab		3	40	60	100	3	2
	25CAI1CM	Core Practical 2 – Artificial Intelligence and Machine Learning Lab		3	40	60	100	3	2
		Total		12	-	-	400	-	8

Part-wise Total Marks:

SUBJECT	MARKS	TOTALCREDITS
Core Theory	200	4
Core Practical	200	4

CIA-Continuous Internal Assessment

ESE-End -of- Semester Examination

Internal 25 marks applicable for theory subjects and 40 marks for Practical subjects.

Components of Continuous Internal Assessment (50 Marks)

Components		Marks	Total		
Theory					
CIAI	75	(75+75) Converted to 15			
CIA II	CIA II 75		25		
Assignment	/Seminar	5			
Attenda	ance	5			
	P	ractical			
CIA Pra	ctical	25			
Observation	Notebook	10	40		
Attenda	ance	5			

^{*} Class Participation, Case Studies Presentation, Field Work, Field Survey, Group Discussion, Term Paper, Workshop/Conference Participation. Presentation of Papers in Conferences, Quiz, Report/Content writing. Etc.

BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN

K1-Remembering; K2-Understanding; K3-Applying; K4-Analyzing; K5-Evaluating

1. ESE Theory Examination:

(i) CIA I & II and ESE: 75 Marks

Knowledge Level	Section	Marks	Description	Total
K1 Q1 to 10	A (Answer all)	10 x 1 = 10	MCQ	
K1 – K5 Q11 to 15	B (Either or pattern)	5 x 5 = 25	Short Answers	75
K2 – K5 Q16 to 20	C (Either or pattern)	5 x 8 = 40	Descriptive / Detailed	

2. ESE Practical Examination:

Knowledge Level	Section	Marks	Total
K3	Experiments	50	
K4		10	60
K5	Record Work	10	

^{**}Two Assignments to be given. (Each5 marks).

CAI-3

Table of Content

S.No	Sub.Code	Title	PageNo
1	25CAI101	Core Paper 1 - Python	4
		with Data Science	
2	25CAI102	Core Paper 2 -	6
		Artificial Intelligence	
		and Machine Learning	
3	25CAI1CL	Core Practical 1 –	8
		Python	
		With Data Science Lab	
4	25CAI1CM	Core Practical 2 –	10
		Artificial Intelligence	
		and Machine Learning	
		Lab	

ProgrammeCode: 12		CERTIFICATE PROGRAMME IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING					
Ti	Title of the Paper: Core Paper1 – Python with Data Science						
Batch Hours/Week Total Hours Credits Skill Development							
2024-2025	3	45	_				

Course Objectives

- 1. To demonstrate the use of built-in objects of Python
- 2. To implement numerical programming, data handling through NumPy Modules.
- 3. To Visualize through MatplotLib modules.
- 4. To Manipulate Pandas DataFrame.

Course Outcomes (CO)

	CO1	Implement the concepts lists, tuples and dictionaries
	CO2	Understand the use of built-in objects of Python
K1toK5	CO3	Implement numerical programming, data handling through NumPy Modules
K1	CO4	Applying MatplotLib modules on datasets for visualization
	CO5	Manipulating Pandas DataFrame and Summarize Data

Syllabus

Unit I (9 Hours)

Introduction to Python for Data Science: Introduction to Python and its applications in Data Science, Python installation and setup (Anaconda, Jupyter Notebook, Google Colab), Basic Python syntax: Variables, Data types, Operators, Control structures: Conditional statements, Loops, Functions, Modules, and Libraries, Introduction to NumPy: Arrays, Operations, Indexing

Unit II (9 Hours)

Data Handling and Preprocessing: Introduction to Pandas: Series and DataFrames, Data manipulation: Filtering, Sorting, Grouping, Handling missing data, Duplicate values, Data cleaning techniques, Data visualization with Matplotlib and Seaborn, Exploratory Data Analysis (EDA)

Unit III (9 Hours)

Introduction to Statistics and Data Analysis: Basics of Statistics: Mean, Median, Mode, Standard Deviation, Probability Basics and Distributions, Correlation and Regression Analysis, Introduction to Scikit-learn (Simple Machine Learning concepts), Supervised Learning: Linear Regression, Classification (Logistic Regression)

Unit IV (9 Hours)

Understanding Machine Learning concepts: Supervised vs. Unsupervised Learning - Basic Classification Algorithms: Decision Trees, K-Nearest Neighbors (KNN) - Introduction to Clustering (K-Means) Model Evaluation: Accuracy, Precision, Recall

Unit V (9 Hours)

Capstone Project and Applications: Introduction to Time Series and Forecasting Basics - Introduction to Natural Language Processing (NLP) Basics - Working with Real-world Data (Simple Projects) Introduction to Model Deployment (Flask/Streamlit) - Capstone Project: End-to-End Data Science Mini-Project

Teaching Methods:

ChalkandTalk, SmartClassRoom, PowerpointPresentation, Seminar, Quiz & Discussion

Text Books:

- 1. ReemaThareja Python Programming: Using Problem Solving Approach, 2nd Edition, Oxford University Press (2023).
- 2. Jake VanderPlas Python Data Science Handbook: Essential Tools for Working with Data, 2nd Edition, O'Reilly Media (2022).

Reference Books:

- 1. Wes McKinney Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Jupyter, 3rd Edition, O'Reilly Media (2022).
- 2. Sebastian Raschka&VahidMirjalili Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-learn, and TensorFlow 2, 3rd Edition, Packt Publishing (2020).
- 3. AurélienGéron Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition, O'Reilly Media (2022).

Mapping

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	Н	Н
CO2	S	S	Н	M	S
CO3	Н	S	Н	S	Н
CO4	S	S	Н	S	Н
CO5	S	Н	Н	S	M

L -Low **S**–Strong **H**–High **M**–Medium

ProgrammeCode:12 CERTIFICATE PROGRAMME IN ARTIFICIAL							
	I	INTELLIGENCE AND MACHINE LEARNING					
Title of the	Title of the Paper: Core Paper 2 – Artificial Intelligence and Machine Learning						
Batch	Batch Hours/Week Total Hours Credits Skill Developm						
2024-2025	3	45	2				

Course Objectives

- 1. Understand and implement loops and basic arithmetic operations.
- 2. understand and implement the concept of Narrow AI
- 3. learn the practical workflow of building a machine learning model with Scikit-Learn.
- 4. Evaluate the performance and accuracy of the rules generated by the algorithm.
- 5. Learn the basic principles of logistic regression and how it can be applied to classification problems.
- 6. Implement the Apriori algorithm to extract frequent itemsets and association rules from transactional data.

Course Outcomes (CO)

			Understanding: Comprehend how to use loops to generate repetitive calculations dynamically.
KS		CO2	Remember the basic concepts of Narrow AI and machine learning algorithms.
K1 to		CO3	Create and modify algorithms to navigate robots efficiently through obstacles.
	•	CO4	Analyze the generated association rules to find significant market trends.
	•	CO5	Evaluate the model's performance in terms of accuracy and precision.

Syllabus

Unit I (9 Hours)

Artificial Intelligence Overview - History & Evolution - AI Types - **Narrow AI**- General AI - Super AI- AI Challenges - AI Tools Frameworks - PyTorch - Scikit-Learn - Microsoft Cognitive Toolkit - Keras - TensorFlow -XGBoost - AI Example - AI Ethics & Bias.

Unit II (9 Hours)

Branches of AI – AI Natural Language Processing - AI Robotics - AI Fuzzy Logic Systems- Artificial Intelligence - Neural Networks - Intelligent system AI – Problem solving in AI – AI Expert System – AI Application.

Unit III (9 Hours)

Introduction to Machine Learning – Importance - Examples of Machine Learning Applications - Machine Learning Life Cycle - Main Challenges of Machine Learning - Machine Learning Limitations.

L-Low

Unit IV (9 Hours)

Types of Machine Learning - Supervised Learning - Classification - Regression - Algorithms for Supervised Learning - Advantages and Disadvantages of Supervised Learning - Unsupervised Machine Learning - Clustering - Association Rule Mining - Algorithms for Unsupervised Learning - Advantages and Disadvantages of Unsupervised Learning.

Unit V (9 Hours)

Reinforcement Learning - Elements - Types - Algorithms - Advantages of Reinforcement Learning - Disadvantages of Reinforcement Learning - Applications of Reinforcement Learning.

Teaching Methods:

ChalkandTalk, SmartClassRoom, PowerpointPresentation, Seminar, Quiz & Discussion

Text Books:

- 1. Stuart Russell, Peter Norvig, (2020) Artificial Intelligence: A Modern Approach, Fourth edition, Pearson Publishing.
- 2. EthemAlpaydm, (2015) "Introduction to Machine Learning", PHI Learning Pvt. Ltd.; Third edition

Reference Books:

- 1. Ian Witten, (2016) Data mining: Practical Machine Learning Tools and Techniques, Fourth edition, Morgan Kaufmann Publishers.
- 2. Tom M. Mitchell (1997). Machine Learning, Tata McGraw-Hill, New Delhi
- 3. Suresh Samudrala,(2019), Demystifying Machine Learning, Neural Networks and deep learning, Notion Press
- 4. Bernard Marr, Artificial Intelligence in Practice: How 50 Successful Companies Used AI and Machine Learning to Solve Problems, Wiley Publications, 2019

Mapping

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	Н	Н
CO2	S	S	Н	S	S
CO3	S	Н	Н	S	Н
CO4	S	S	S	S	M
CO5	S	S	S	Н	M

S–Strong H–High M–Medium

Sub.Code:24CAI1CL

ProgrammeCode:12	CERTIFICATE PROGRAMMEINARTIFICIAL INTELLIGENCE AND MACHINELEARNING					
Core Practical 1– Python with Data Science Lab						
Batch Hours/Week Total Hours Credits						
2024-2025	3	45	2			

Course Objectives

- 1. To gain knowledge about the concepts of Built-in functions and User-defined functions.
- 2. To understand the concepts of Numpy and Pandas.
- 3. To learn Python Programming and Key Python Libraries related to AI.
- 4. To implement classification, clustering and regression algorithms in Python.
- 5. To develop programs using Matplotlib.

Course Outcomes (CO)

	CO1	Implement the concepts of built-in functions in python programming.
l kg	CO2	Implement various machine learning algorithms using python programming.
to K5	CO3	Understand the basics of Matplotlib.
K3	CO4	Analyze the concept of Decision Tree.
	CO5	Implement the concepts of Numpy and Pandas.

<u>List of Practical Programs</u>

- 1. Write a Python program to perform basic operations on lists, tuples, and dictionaries. (Add, remove, update elements in a list and dictionary. Tuple unpacking and indexing.)
- 2. Write a Python program to read a CSV file using Pandas and display the first 5 rows. (Use Pandas read_csv() function. Display data types of each column.)
- 3. Write a Python program to handle missing values in a dataset using Pandas. (Fill missing values using mean, median, mode. Drop rows with missing values.)
- 4. Write a Python program to visualize data using Matplotlib and Seaborn. (Create a bar chart, histogram, and scatter plot. Customize charts with titles and labels.)
- 5. Write a Python program to calculate mean, median, standard deviation, and correlation for a given dataset. (Use NumPy and Pandas for statistical calculations.)
- 6. Write a Python program to create a heatmap for correlation between different numerical columns in a dataset. (Use Seaborn'sheatmap() function.)
- 7. Write a Python program to implement Linear Regression using Scikit-learn.
- 8. Write a Python program to implement K-Means Clustering
- 9. Write a Python program to perform sentiment analysis on text data using NLP techniques.
- 10. Write a Python program to build a simple Decision Tree classifier using Scikit-learn.

Guidelines to the distribution of marks for Practical Examinations:

Two Questions will be given for each student. (3 Hours / 60 marks)

Record: 10 marks

Particulars	Program1	Program2	
	(Marks)	(Marks)	
Algorithm	5	5	
Program Coding	15	15	
Execution& Modifications	5	5	

Teaching Methods:

Presentation and Program Demonstration using Projector

Mapping

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	M	S	Н
CO4	S	S	S	S	S
CO5	S	S	S	S	Н

S–Strong \mathbf{H} –High \mathbf{M} –Medium \mathbf{L} –Low

ProgrammeCode:12	CERTIFICATE PROGRAMME IN ARTIFICIAL				
	INTELLIGENCE AND MACHINE LEARNING				
Title of the Paper: Core Practical 2– Artificial Intelligence and Machine Learning Lab					
Batch	Hours/Week	Total Hours	Credits		

Course Objectives

- 1. Understand and implement loops and basic arithmetic operations.
- 2. understand and implement the concept of Narrow AI
- 3. learn the practical workflow of building a machine learning model with Scikit-Learn.
- 4. Evaluate the performance and accuracy of the rules generated by the algorithm.
- 5. Learn the basic principles of logistic regression and how it can be applied to classification problems.
- 6. Implement the Apriori algorithm to extract frequent itemsets and association rules from transactional data.

Course Outcomes (CO)

	CO1	Understand to use loops to generate repetitive calculations dynamically.
9	CO2	Remember the basic concepts of Narrow AI and machine learning algorithms.
to K5	CO3	Create and modify algorithms to navigate robots efficiently through obstacles.
K1	CO4	Analyze the generated association rules to find significant market trends.
	CO5	Evaluate the model's performance in terms of accuracy and precision.

LIST OF PRACTICAL PROGRAMS

- 1. Write a program Construct a multiplication table for the given number.
- 2. Write a program for Narrow AI using Scikit-Learn
- 3. Write a program for Demonstrating bias in AI
- 4. Write a program for AI-based robot navigating a grid using a basic decision-making algorithm.
- 5. Write a program for Association Rule Mining using Apriori Algorithm:
 - (Dataset: Use Groceries dataset for market basket analysis)
- 6. Write a program for Classification with Logistic Regression (Dataset: Use the Iris dataset)
- 7. Write a program to implement supervised, unsupervised learning.
- 8. Write a program for Neural Network using frameworks like KerasorTensorFlow.
- 9. Write a program for Spam Identification using Naive Bayes algorithm
- 10. Write a program to implement reinforcement learning.

Guidelines to the distribution of marks for Practical Examinations:

Two Questions will be given for each student. (3 Hours / 60 marks)

Record: 10 marks

Particulars	Program1	Program2	
	(Marks)	(Marks)	
Algorithm	5	5	
Program Coding	15	15	
Execution& Modifications	5	5	

Teaching Methods:

ChalkandTalk, SmartClassRoom, PowerpointPresentation, Seminar, Quiz & Discussion

Text Books:

- 1. Stuart Russell, Peter Norvig, (2020) Artificial Intelligence: A Modern Approach, , Fourth edition, Pearson Publishing.
- 2. EthemAlpaydm, (2015) "Introduction to Machine Learning", PHI Learning Pvt. Ltd.; Third edition,

Reference Books:

- 1. Ian Witten, (2016) Data mining: Practical Machine Learning Tools and Techniques, Fourth edition, Morgan Kaufmann Publishers.
- 2. Tom M. Mitchell (1997). Machine Learning, Tata McGraw-Hill, New Delhi
- 3. Suresh Samudrala(2019), Demystifying Machine Learning, Neural Networks and deep learning, Notion Press
- **4.** Bernard Marr, Artificial Intelligence in Practice: How 50 Successful Companies Used AI and Machine Learning to Solve Problems, Wiley Publications, 2019

.MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	Н	S	S
CO2	S	S	S	Н	M
CO3	S	Н	M	Н	S
CO4	S	M	S	M	Н
CO5	S	Н	Н	S	S

S - Strong H - High M - Medium L - Low