KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) COIMBATORE – 641 029

DEPARTMENT OF BIOCHEMISTRY (UG)

CURRICULUM AND SCHEME OF EXAMINATIONS (CBCS) (2023 – 2024 ONWARDS)

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) COIMBATORE- 641029

DEPARTMENT OF BIOCHEMISTRY (UG)

Vision:

- To promote goal-oriented innovative teaching, interdisciplinary research by interfacing biochemistry with modern and applied biology to address problems affecting human health and welfare.
- Training scholars to be the next generation scientists

Mission:

- To generate new knowledge by teaching and engaging in cutting edge research and to promote academic growth by offering state of the art under graduate, post graduate and doctoral programmes.
- To identify, based on an informed perception of regional and global needs, area of specialization upon which the department can concentrate.
- To undertake collaborative projects which offer opportunities for long term interaction with academia and industries

PROGRAMME OUTCOME (PO)

PO1: To presume, question and evaluate, solve problems, integrate knowledge and widenperspective.PO2: To understand that communication comprises attentiveness and listening, reading and comprehension, to communicate and collect information through oral and written formats.

PO3: To applycontemporaryresearch methods, skills and techniques in a scientific discipline.

PO4: To reveal empathetic social concern and national development, and the ability to act with aninformed awareness of issues and participate in civic life through volunteering.

PO5: To understand the issues of environmental contexts and sustainable development and toengage in independent and life-long learning.

PO6: To acquire a broad foundation in chemical processes that stresses scientific reasoning and analytical problem solving with a molecular and biological perspective.

PO7: To develop the ability to think logically and clearly by articulation of thoughts, criticalevaluation of experimental data and scientific literature.

PO8: To inculcate research culture in consonance with current trends in the field of biochemistry soas to develop broad scientific knowledge in the students.

PROGRAMME SPECIFIC OUTCOME (PSO)

PSO1: Understanding of structure and metabolism of macromolecules, regulation and disorders of metabolic pathways.

PSO2: Investigate the impact of science in society and plan to pursue research

PSO3: Gain proficiency in laboratory techniques in both Biochemistry and Molecular biology and be able to apply the scientific method to the processes of experimentation and hypothesis testing. **PSO4:** Understand the application of Biochemistry in clinical laboratory.

PSO5: Acquire thorough knowledge in biochemical techniques, immunology, physiology, molecular biology, genetic engineering and biotechnology

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

COIMBATORE-641029 Course Name: B.Sc., Biochemistry Curriculum and Scheme of Examination under CBCS

(Applicable to the students admitted during the Academic Year 2023-2024)

er			ion c	Exam. Marks			u -		
Semester	Part	Subject Code	Title of the Paper	Instruction hours/cyc	CIA	ESE	TOTAL	Duration ofExam	Credits
	Ι	23TML101	Language I@	6	25	75	100	3	3
	Π	23ENG101	English–I	6	25	75	100	3	3
	III		Core Paper 1 - Chemistry of	7	25	75	100	3	6
		23UBC101	Biomolecules						
I	III	-	Core Practical 1 - Biochemistry	2	-	-	-	-	-
	III	23UZO1A1	Allied Paper 1 – Zoology I	5	20	55	75	3	4
	Ш	-	Allied Practical 1 – Zoology	2	-	-	-	-	-
	IV	23EVS101	Environmental Studies**	2	-	50	50	3	2
	Tota	1	1	30	-	-	425	-	18
	Ι	23TML202	Language II@	6	25	75	100	3	3
	Π	23ENG202	English–II	6	25	75	100	3	3
	III	23UBC202	Core Paper 2 – Bio analytical Techniques	7	25	75	100	3	6
п	III	23UBC2CL	Core Practical 1 – Biochemistry	2	40	60	100	3	2
-	III	23UZO2A2	Allied Paper 2 – Zoology II	5	20	55	75	3	4
	III	23UZO2AL	Allied Practical 1 – Zoology	2	20	30	50	3	2
	IV	23VED201	Value Education – Moral and Ethics**	2	-	50	50	3	2
	Tota	1		30	-	-	575	-	22
	Ι	23TML303	Language III @	6	25	75	100	3	3
	Π	23ENG303	English – III	6	25	75	100	3	3
	Ш	23UBC303	Core Paper 3 – Enzymes and Enzyme	4	25	75	100	3	5
			Technology						
	III	-	Core Practical 2 - Biochemistry	3	-	-	-	-	-
	III	23UCH3A3	Allied Paper 3 – Chemistry I	5	20	55	75	3	4
Ш		-	Allied Practical 2 – Chemistry	2	-	-	-	-	-
	IV	23UGC3S1	Skill Based subject 1 -	2	100	-	100	2	3
			Cyber security*						
	IV	23TBT301/23TAT	Basic Tamil */Advanced Tamil**/	2	-	75	75	3	2
		301/23UHR3N1	Non-major elective-I**						
	Tota	1	·	30	-	-	550	-	20

Gra	nd Tota	WEC101#		-	1165	2635	3800	-	140
	V	PYE/ECC/RRC/	Co-curricular Activities*	-	50	-	50	-	1
	TULA	23NCC ^{\$} /NSS/YRC/		50			700		52
	Tota	1		30	-	-	900	-	32
	III	23UBC6S3	SBS 3 Techniques in Genomics and Proteomics	2	25	75	100	3	3
	III	23UBC6Z1	Project***	4	20	80	100	-	5
	III	23UBC6CP	Core Practical 5 – Biochemistry	2	40	60	100	4	2
	III	23UBC6CO	Core Practical 4 – Biochemistry	2	40	60	100	4	2
11	III	23UBC6CN	Core Practical 3 – Biochemistry	4	40	60	100	6	3
VI	III	23UBC6E2	Major Elective 2	4	25	75	100	3	5
	III	23UBC611	Core Paper 11 – Genetic Engineering	4	25	75	100	3	4
	Ш	25000010	Immuno Techniques	-	25	15	100	5	-
		23UBC610	Core Paper 9 – Plant Biochemistry Core Paper 10 – Immunology and	4	25	75	100	3	4
	Tota III	23UBC609	Core Paper 9 – Plant Biochemistry	30	- 25	- 75	600	- 3	24
	23UBC5IT Internship Training****		20			Grade		24	
	IV		-	2	100	-	100	3	3
	III	-	Core Practical 5 – Biochemistry Extra Departmental Course (EDC)*	2	-	-	102	-	-
V	Ш	-	Core Practical 4 – Biochemistry		-	-		-	-
	III	-	Core Practical 3 – Biochemistry	4	-	-		-	-
	III	23UBC5E1	Major Elective 1	4	25	75	100	3	5
	III	23UBC508	Core Paper 8 – Molecular Biology	4	25	75	100	3	4
	III	23UBC507	Core Paper 7 – Clinical Biochemistry	4	25	75	100	3	4
	III	23UBC506	Core Paper 6 – Cell Biology	4	25	75	100	3	4
	III	23UBC505	Core Paper 5 – Human Physiology & Endocrinology	4	25	75	100	3	4
	Tota	1		50			/00	1	23
		402/23UWR4N2	Non-major elective-II**	30			700		23
	IV	23TBT402/23TAT	Basic Tamil*/Advanced Tamil**/	2	-	75	75	3	2
	IV	23UBC4S2	SBS 2 – Techniques in Biotechnology	2	25	75	100	3	3
IV	III	23UCH4AL	Allied Practical 2 – Chemistry	3	20	30	50	3	2
	Ш	23UCH4A4	Allied Paper 4 – Chemistry II	4	20	55	75	3	4
	Ш	23UBC4CM	Core Practical 2 – Biochemistry	3	40	60	100	3	2
	Ш	23UBC404	Core Paper 4 – Intermediary Metabolism	4	25	75	100	3	4
	II	23ENG404	English–IV	6	25	75	100	3	3
	I	23TML404	Language IV@	6	25	75	100	3	3

Note:

CBCS – Choice Based Credit system, CIA– Continuous Internal Assessment, ESE– End of Semester Examinations

\$ For those students who opt NCC under Co-curricular activities will be studying the prescribed syllabi of the UGC which will include Theory, Practical & Camp components. Such students who qualify the prescribed requirements will earn an additional 24 credits.

@ Hindi/Malayalam/ French/ Sanskrit - 23HIN/MLM/FRN/SAN101 - 404

* - No End-of-Semester Examinations. Only Continuous Internal Assessment (CIA)

**- No Continuous Internal Assessment (CIA). Only End-of-Semester Examinations (ESE)

*** Project Report – 60 marks; Viva voce – 20 marks; Internal-20 marks

**** The students shall undergo Internship training / field work for a minimum period of 14 working days at the end of the <u>fourth</u> semester during summer vacation and submit the report in the <u>fifth</u> semester which will be evaluated for 100 marks by the concerned guide and followed by an Internal Viva voce by the respective faculty or HOD as decided by the department. According to their marks, the grades will be awarded as given below.

Marks %	Grade
85 - 100	0
70 - 84	D
60 - 69	А
50 - 59	В
40 - 49	С
< 40	U (Reappear)

Maior Elective Papers

(2 papers are to be chosen from the following 6 papers)

- 1. Microbiology
- 2. Basics of Bioinformatics
- 3. Biopharmaceuticals
- 4. Dairy Biochemistry
- 5. Biostatistics
- 6. Nutritional Biochemistry

Non-Major Elective Papers

- 1. Human Rights
- 2. Women's Rights
- 3. Consumer Affairs

Sub. Code & Title of the Extra Departmental Course (EDC):

23UBC5X1-Human Diseases and Healthcare

List of Co curricular Activities:

- 1. National Cadet Corps (NCC)
- 2. National Service Scheme (NSS)
- 3. Youth Red Cross (YRC)
- 4. Physical Education (PYE)
- 5. EcoClub (ECC)
- 6. Red Ribbon Club (RRC)
- 7. Women Empowerment Cell (WEC)

Note: In core/ allied subjects, no. of papers boththeory and practical are included wherever applicable.

However, the total credits and marks for core/allied subjects remain the same as stated below.

Tally Table:

S.No.	Part	Subject	Marks	Credits
1.	Ι	Language – Tamil/Hindi/Malayalam/	400	12
		French/ Sanskrit		
2.	II	English	400	12
		Core – Theory/Practical	1600	60
3.	III	Allied	400	20
		Electives/Project	300	15
		Basic Tamil / Advanced Tamil (OR) Non-	150	4
		major electives		
4.	IV	Skill Based subjects	300	9
		EDC	100	3
		Environmental Studies	50	2
		Value Education	50	2
5.	V	Cocurricular Activities	50	1
		Total	3800	140

- 25 % CIA is applicable to all subjects except JOC, COP and SWAYAM courses which are considered as extra credit courses.
- > 100 % CIA for Cyber Security and EDC paper.
- The students who complete any course through MOOC On learning platforms like SWAYAM, NPTEL, Course era, IIT Bombay Spoken Tutorial etc., before the completion of the 5th semester and the course completion certificate should be submitted through the HOD to the Controller of Examinations. Extra credits will be given to the candidates who have successfully completed.
- > An **Onsite Training** preferably relevant to the course may be undertaken as per the discretion of the HOD.
- Students who successfully complete Naan Mudhalvan courses in 3rd and 5th semester will be given 2 extra credits for each course. They are asked to submit the marks to Controller of Examinations through and undersigned by the HOD.

Semester	Naan Mudhalvan Course Title
Ш	INTERNATIONAL REGULATORY REQUIREMENTS FOR CLINICAL TRIALS AND DATA MANAGEMENT
V	BVERSITY'S PCR TECHNOLOGY COURSE

Components of Continuous Internal Assessment

Compone	nts	Marks	Total
	Т	`heory	
CIA I CIA II	75 75	(75+75) Converted to 15	
Assignment/Ser		5	25
Attendan		5	
	Theo	ry (Allied)	
CIAI	55	(55+55)	
CIA II	55	Converted to 10	20
Assignment/Ser	ninar	5	20
Attendan	ce	5	
	Pı	ractical	
CIA Practi	cal	25	
Observation Not	ebook	10	40
Attendan	ce	5	
	Practi	cal (Allied)	
CIA Practi	cal	10	
Observation Not	ebook	5	20
Attendan	ce	5	
	Project	t/Case study	
Review		15	
Regularit	y	5	20

BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN

K1-Remembering; K2-Understanding; K3-Applying; K4-Analyzing; K5-Evaluating

1. Theory Examination:

(i) CIA I & II and ESE: 75 Marks

Knowledge Level	Section	Marks	Description	Total
K1 Q1 to 10	A (Answer all)	10 x 1 = 10	MCQ	
K1 – K5 Q11 to 15	B (Either or pattern)	5 x 5 = 25	Short Answers	75
K2 – K5 Q16 to 20	C (Either or pattern)	5 x 8 = 40	Descriptive / Detailed	

(ii) CIA I & II and ESE: 55 Marks (Allied)

Knowledge Level	Section	Marks	Description	Total
K1 Q1 to 10	A (Answer all)	10 x 1 = 10	MCQ	
K1 – K5 Q11 to 15	B (Either or pattern)	5 x 3 = 15	Short Answers	55
K2 – K5 Q16 to 20	C (Either or pattern)	5 x 6 = 30	Descriptive / Detailed	

2. ESE Practical Examination:

Knowledge Level	Section	Marks	Total
K3	Experiments	50	
K4	·	10	60
K5	- Record Work	10	

(For Allied papers)					
Knowledge Level	Section	Marks	Total		
K3	Experiments	25			
K4	-	05	30		
K5	Record Work	05			

3. ESE Project Viva Voce:

Knowledge Level	Section	Marks	Total
К3	Project Report Viva	60	00
K4	voce		80
K5		20	

Programme Co	de: 07	B.Sc. Biochemistry			
Course Code: 2	3UBC101	Core Paper 1 – CHEMISTRY OF BIOMOLECULES			
Batch Semester		Hours / Week	Total Hours	Credits	
2023-2024 I		7	105	6	

Course Objectives

- 1. To learn the chemistry and structure of different biomolecules
- 2. To understand the biological significance of different biomolecules
- 3. To learn the Elementary treatment on structure of proteins.

Course Outcomes (CO)

	CO1	Define the functions and properties of carbohydrates, lipids, amino acids, proteins and nucleic acids
	CO2	Classify the biomolecules according to their structures
K1 to K5	CO3	Sketch the basic structure of biomolecules and reactions involving them
	CO4	Distinguish different types of sugars, fats, amino acids and proteins based on the physical, chemical and biological aspects
	CO5	Describe the various types of nucleic acids and their structures

Total hours: 105

UNIT I

(21 hrs)

Carbohydrates

Carbohydrates: Definition and Classification. Monosaccharides – Structural aspects-asymmetric carbon atom, D and L isomers, anomers, optical activity and mutarotation. Epimers: pyranose and furanose forms, aldo and keto forms, classification, definition, structure and biological importance.

Hexoses: glucose, fructose, galactose and mannose. Pentoses: Ribose and deoxyribose. Disaccharides: Maltose, sucrose and lactose.

Polysaccharides: Homopolysaccharides:-Starch, glycogen, cellulose, inulin and chitin, Heteropolysaccharides:- Heparin, hyaluronic acid, chondroitin sulphates, Reactions of monosaccharides- Oxidation of glucose (aldonic acid, aldaric acid and uronic acid).

Action of alkalies with sugars, reducing action of sugars in alkaline solution and reaction with phenyl hydrazine.

UNIT II

Lipids:

Classification, properties and functions of lipids. Types of fatty acids: saturated and unsaturated Essential fatty acids. Classification and significance of phospholipids: Phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol and sphingomyelin.

Classification and significance of glycolipids: Cerebrosides and gangliosides. Classification and functions of lipoproteins*. Structure and biological functions of cholesterol.

UNIT III

(21 hrs)

(21 hrs)

Amino acids:

Introduction; definition; classification of amino acids based on structure, side chain metabolism and nutritional requirements. Properties of amino acids – ampholyte and isoelectric point, optical activity. General reactions of amino acids: due to carboxylic group – decarboxylation and amide formation; due to amino group – transamination and oxidative deamination; due to side chain– transmethylation and ester formation.

UNIT IV (21 hrs)

Proteins:

Introduction, general properties, classification and functions. Bonds relating to protein structure – strong bonds (peptide and disulphide bonds) - weak bonds (hydrogen and hydrophobic bonds).

Basic concepts on structure of proteins – primary, secondary, tertiary and quaternary structure. Denaturation and Renaturation. The amino acid substitution disorder eg. Sickle cell anemia.

UNIT V

Nucleic acids:

Introduction; Types of nucleic acids; Structure of purine (A and G) and pyrimidine (C,U,T, dihydrouridine and pseudo uridine) bases.

Structure of nucleotides – AMP, dAMP, GMP, dGMP, CMP, dCMP, TMP, UMP. Structure of DNA – Watson and Crick model.

Structure of RNA – mRNA, tRNA and rRNA. Denaturation and Renaturation.

(21 hrs)

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books

- U. Satyanarayana and U. Chakrapani (2013). Biochemistry. Elsevier and Books & Allied (P)Ltd. Kolkata.
- Ambika Shanmugam (2008), Fundamentals of Biochemistry for Medical Students, 7thed., Published by the Author, Chennai – 600035.
- 3. Deb, A.C. (2011), Fundamentals of Biochemistry, 10th ed., New Central Book Agency Pvt. Ltd., Kolkata 700009.

Reference Books

- Voet, D., Voet, J.G. and Pratt, C.W. (2013), Fundamentals of Biochemistry, Life at the Molecular Level, 4thed., John Wiley & Sons, New Delhi,110002.
- 2. Harper, David a Bender (2015) ,Text book of Harper illustrated Biochemistry, Mc graw hill education, Newyork.
- APA. Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry (7th ed.). W.H. Freeman, Chicago.
- 4. Vasudevan, DM., Sreekumari, S. and Kannan Vaidyanathan (2011), Text Book of Biochemistry for Medical Students, 6th ed., JAYPEE Brothers Medical Publishers Pvt. Ltd., New Delhi,110002.
- 5. Robert K. Murray, Daryl K. Grannerand Victor W.Rodwell (2008), 29thed.,Harper^{*}sIllustrated Biochemistry. McGraw Hill Companies, Inc. New Delhi.
- 6. J.L.Jain, Sanjay Jain and Nitin Jain, 1997, "Fundamentals of. Biochemistry" (6th. Edition) New Delhi.

* Questions may also be taken from the self-study portion

23UBC101

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	S	S	S
CO2	S	Н	S	М	S
CO3	S	Н	Н	S	Н
CO4	Н	S	S	Н	М
CO5	S	Н	S	Н	М
S–	- Strong	$\mathbf{H} - High$	M– M	edium	L –Low

Programme Co	de: 07	B.Sc. Biochemistry		
Course Code: 23UBC202		Core Paper 2- BIOANALYTICAL TECHNIQUES		
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	II	7	105	6

Course Objectives

- 1. To know the various types of buffer systems in blood and plasma and its significance in the maintenance of blood pH
- 2. To understand the principle, materials, methods and applications of chromatography, electrophoresis and colorimetry.
- 3. To detect and measure the radioactivity and explore its role in biological and clinical fields.

Course Outcomes (CO)

UNIT I

K1 to K5	CO1	Recall the definition of acids, bases and buffers.						
	CO2	Describe the various buffer systems present in blood and plasma, and their role in maintaining the blood pH and various bioanalytical techniques.						
	CO3	Demonstrate the types and techniques of chromatography, electrophoresis and colorimetry.						
	CO4	Analyze the separated/purified components from the samples by chromatography, electrophoresis and colorimetry.						
	CO5	Describe the radioactivity types and their applications.						

Total Hours: 105

(21 hrs)

Acids, bases, pH scale, ionization-pKa, derivation of Henderson - Hassel Balch equation for acids and bases, buffer solutions, buffer systems of blood and RBC, hemoglobin buffer system. pH indicators.

pH meter. Various ways of expressing the concentrations of solutions – normality, molarity and percentage solution*

(21 hrs)

Chromatography: Principle, technique and applications of paper, thin layer, column, ion exchange, molecular sieve and affinity chromatography. HPLC- technique and applications.

UBC 14

UNIT III (21 hrs)

Electrophoresis: Principle, factors affecting, instrumentation and applications of agarose gel, SDS-PAGE, isoelectric focusing and immune electrophoresis.

Centrifugation – Svedberg unit, Types-densitygradient, differential and ultra-centrifuge.

UNIT IV

UNIT II

Colorimetry –Derivation of Lambert's and Beer law, principle, components, instrumentation and working of a single cell photo electric colorimeter, UV and IR spectrophotometer. Comparison and applications of colorimeter and spectrophotometer. Gas Chromatography- Mass Spectrometry (GCMS)

UNIT V

Radioactivity: Types of Radioactive decay, Units of radioactivity (Curie, Rutherford and Becquerrel), detection and measurement of radioactivity by scintillation counter – solid and liquid scintillators, counting efficiency and factors affecting counting efficiency. Advantages and disadvantages of scintillation counting. Autoradiography and applications. Applications of radioisotopes in medical diagnosis, archeology, industries and agriculture.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

- Asokan, P (2006), Basics of Analytical Biochemical Techniques, Chinna Publications. Melvisharam, Tamil Nadu.
- Ambika Shanmugam (2008), Fundamentals of Biochemistry for Medical Students, 7thed., Published by the Author, Chennai – 600035.
- Jayaraman. J. (2011), Laboratory Manual in Biochemistry, 2nd edition, New age International Pvt, Delhi

(21 hrs)

(21 hrs)

Reference Books:

- Sadhasivam. S. and Manickam. A. (2008). Biochemical Methods, 3rd ed., New Age International Publishers Ltd, NewDelhi
- Skoog. D.A., West. D.M, James H. F., Crouch. S.R., (2008), Fundamentals of AnalyticalChemistry, 4th edition, Barkha Nath Printers, India.
- Wilson. K. and Walker. J. (2011), Principles and Techniques of Biochemistry and MolecularBiology, 7thed, Cambridge University Press, New York.
- David. T. Plummer, (2004), An Introduction to Practical Biochemistry, 3rd edition, Tata McGrawHill Publishing Company Ltd, New Delhi.
- APA. Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry (7th ed.). W.H. Freeman, Chicago.
- 6. E.J.Wood (1989) Practical Biochemistrycolleges, Elsevier, Pergamon.

*Question may also be taken from self-study portion

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	Н	S	Н
CO2	Н	S	М	S	S
CO3	S	Н	Н	S	Н
CO4	Н	Н	S	S	Н
CO5	Н	Н	S	S	Н

S–Strong

23UBC2CL

Programme Co	de: 07	B.Sc Biochemistry		
Course Code: 23UBC2CL		C.Pr.1. BIOCHEMISTRY		
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024 I & II		2	60	2

Course Objectives

- 1. To acquire skill of analyzing carbohydrates and amino acids.
- 2. To provide practical knowledge about the characterization of lipids.
- 3. To learn the methodology of separation of amino acids by paper chromatography.

Course Outcomes (CO)

	CO1	Learn the reagent preparation methods for qualitative analysis of biomolecules				
	CO2	Practice the qualitative analysis of different carbohydrates and amino acids through individual experiments				
K3 to K5	CO3	Practice the qualitative analysis of different amino acids through individual experiments				
it.	CO4 Calculate iodine number of lipids, thereby characterizing them					
	CO5	Assess the separation technique of amino acids through paper chromatography				

Analysis of Biomolecules

I. Qualitative Analysis of Carbohydrates

a. Monosaccharides	-Hexoses: Glucose and fructose.	Pentose: Arabinose
b. Disaccharides	-Sucrose and Lactose	
c. Polysaccharides	-Starch	

23UBC2CL

II. Qualitative Analysis of Amino acids

- a. Arginine
- b. Histidine
- c. Tyrosine
- d. Tryptophan
- e. Cysteine

III. Characterization of Lipids (Group Experiment)

Determination of Iodine number

IV. Separation Technique (Demonstration)

Separation of amino acids by paper chromatography

Reference Books:

- Jayaraman. J. (2011), Laboratory Manual in Biochemistry, 2nd edition, New age International Pvt, Delhi
- 2. Gupta. R.C and Bharghava. S (2013), Practical Biochemistry, 5th edition, CBS Publishers and Distributors, New Delhi.
- David. T. Plummer, (2004), An Introduction to Practical Biochemistry, 3rd edition, Tata McGraw Hill Publishing Company Ltd, NewDelhi.
- Sadhasivam. S. and Manickam. A. (2008). Biochemical Methods, 3rd ed., New Age International Publishers Ltd, NewDelhi.
- 5. E.J.Wood (1989) Practical Biochemistrycolleges, Elsevier, Pergamon.
- J.L.Jain, Sanjay Jain and Nitin Jain, 1997, "Fundamentals of. Biochemistry" (6th. Edition) New Delhi.

23UBC2CL

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	Н	Н	S	S	М
CO2	S	S	S	S	Н
CO3	S	S	Н	S	Н
CO4	Н	S	S	Н	S
CO5	S	S	Н	S	S

S–Strong

 $\mathbf{H} - \mathrm{High}$

M– Medium

L –Low

QUESTION PAPER PATTERN FOR PRACTICAL EXAMINATION

Core Practical 1 - Biochemistry

23UBC2CL

Time: 3 hrs

Max. Marks: 60

a. Analyse systematically the given unknown sugar solution and write the systematic procedure(20+5marks).

b. Analyse systematicallythe given unknown amino acid solution and write the systematicprocedure (20+5marks).

c. Record – 10marks

Valuation of answer scripts:

A. Core Biochemistry Practical 1

For qualitative analysis, the following samples shall be given

I-Carbohydrate

Glucose, Fructose, Arabinose, Sucrose, Lactose and Starch

II -Aminoacid

Arginine, Histidine, Tyrosine, Tryptophan and Cysteine

ESE Marks

Qualitative Analysis

Analysis I	
Procedure	05
Test and Results	20
Analysis II	
Procedure	05
Test and Results	20
Record	10
Total	60

CIA Marks

Attendance	05
Observation Note book & Regularity	10
CIA model Practical Test	25 (60 marks will be converted to 25)
Total	40

Programme Code:07		B.Sc. Biochemistry		
Course Code: 2	3UBC303	Core Paper III – ENZYM	IES AND ENZYME	FECHNOLOGY
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	III	4	60	5

Course Objectives

- 1. To perceive knowledge about enzymes and their kinetics.
- 2. To studyabout the coenzymes and their roles in the biological system.
- 3. To know about the recent enzyme technologies and their applications for diagnostic purpose.

Course Outcomes (CO)

	CO1	Remember the role of enzymes in biological system
17.1	CO2	Acquire thorough knowledge on the enzyme kinetics and inhibition.
K1 To K5	CO3	Deploythe properties and functions of coenzymes and cofactors.
	CO4	Analyze the biological importance of immobilized enzymes and applications
	CO5	Understand the types of biosensors, and Artificial enzymes

Total Hours: 60

UNIT I

(12 hrs)

(12hrs)

Enzymes: Introduction, Definition, International Classification of enzymes, Numbering and nomenclature. Enzyme unit (IU). Principles of enzyme catalysis. Definition of active sites. Theories proposed – Lock and Key or template model and induced fit model, ordered and random binding of substrate. Enzyme specificity – Group specificity and optical specificity. Turnover number. Enzyme activity and factors affecting the rate of enzyme activity – effect of temperature, pH, enzyme concentration and substrate concentration.

UNIT II

Enzyme Kinetics: Derivation of Michalies -Mentons equation, transformation of MM equation, Line-Weaver Burk plot. Regulatory enzymes, allosteric enzymes. Enzyme inhibition: competitive, noncompetitive and uncompetitive enzyme inhibition. Feedback inhibition.

	23UBC303
UNIT III	(12 hrs)
Coenzymes: Definition; structure and functions of thiamine pyrophosphate, nicotir	namide adenine
dinucleotide, nicotinamide adenine dinucleotide phosphate, Flavin mono nucleotide,	Flavin adenine
dinucleotide, coenzyme A, lipoic acid, biotin and folate coenzymes. Cofactors: Definition	and Examples*
UNIT IV	(12 hrs)
Enzyme technology: Immobilized enzymes: sources and techniques of immobilization – ad	lsorption,
entrapment, microencapsulation, covalent binding and cross linking. Choice of immobilizat	ion techniques.
Industrial, analytical and medicinal applications of immobilized enzymes. Uses of enzymes	s in analysis:
Enzymes of diagnostic importance, Isoenzymes: Definition with example-Lactate dehydrog	genase. ELISA.
UNIT V	(12 hrs)

Biosensors: Principle, types and components of Colorimetric, potentiometric and optical immune sensors, Artificial enzymes: abzymes, synzymes and ribozymes.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

- 1. Anil Kumar & Sarika Garg, (2015), Enzymes and Enzyme Technology, Viva books, New delhi.
- 2. U. Sathyanarayana (2013). Biochemistry4th edition. Elsevier health sciences. Elsevier India.
- 3. Martinek, R.: Practical Clinical Enzymology: J. Am. Med. Tech., 31, 162 (1969).

Reference Books:

- 1. D. Balasubramanyam, CFA. Bryce, K. Dharmalingham, J. Green, Kunthala Jayaraman, (2007), Concepts in Biotechnology, Universities Press (India) Pvt Ltd, Hyderabad.
- Talwar. G.P (2012), Text book of biochemistry and Human Biology, 3rd edition, Prentice Hall of India Private Ltd, New Delhi.
- EE. Conn and PK. Stumpf, G. Bruening and RY. Doi (2010), Outlines of biochemistry, 5th ed, John Wiley and Sons, New York, USA.
- David L Nelson, Micheal M Cox(2008), Lehninger"s Principles of Biochemistry, Replikapress (P) Ltd, India.
- 5. Palmer & Bonner (2007).Enzymes, Biochemistry, Biotechnology, Clinical Chemistry, 2nd Ed, Elsevier publications, India.
- Nicholas C. Price and Lewis Stevens (2003). Fundamentals of enzymology. Oxford university press. New York. USA.

* Questions may also be taken from the self-study portion

23UBC303

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	Н	S	S
CO2	S	S	S	S	S
CO3	S	Н	Н	S	Н
CO4	Н	Н	S	S	S
CO5	Н	S	S	Н	S

S–Strong

 \mathbf{H} – High

M– Medium

L –Low

Programme	Code : 07			25000551
Course Code	: 23UGC3S1	Skill Based Su	bject 1 – Cybe	r Security
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	Ш	2	30	3

Course Objectives

- 1. The course introduces the basic concepts of Cyber Security
- 2. To develop an ability to understand about various modes of Cyber Crimes and Preventive measures
- 3. To understand about the Cyber Legal laws and Punishments

Course Outcomes (CO)

K1	CO1	To Understand the Concepts of Cybercrime and Cyber Frauds
K2	CO2	To Know about Cyber Terrorism and its preventive measures
K3	CO3	To Analyze about the Internet, Mobile Phone and E-commerce security issues
K4	CO4	To Understand about E-mail and Social Media Issues
K5	CO5	To Describe about various legal responses to Cybercrime

Unit I

Introduction to Cyber Security: Definition of Cyber Security- Why is Cyber Security important? Layers of Cyber Security- Evolution of Cyber Security. Cyber hacking - Cyber fraud: Definition- Different modes of cyber fraud - Cyber fraud in India. Cyber pornography. (6 hrs)

Unit II

Cyber Terrorism: Modes of cyber terrorism. Cybercrime: What is Cybercrime? Cybercrime preventive methods - Preventive steps for individuals & organizations - Kinds of cybercrime - Malware and its types - Cyber attacks.

Unit III

Internet Mobile Phone and E-commerce Security issues: Data theft - Punishment of data theft- Theft of internet hours - Internet safety tips for children & parents. Mobile phone privacy-E-Commerce security issues.

Unit IV

Email and Social media issues: Aspects of Social Media - The Vicious Cycle of unhealthy social media use-Modifying social media use to improve mental health. Computer Virus - Antivirus - Firewalls.

(6 hrs)

(5 hrs)

(6 hrs)

23UGC3S1

23UGC3S1 (7 hrs)

Cyber Forensics and Digital Evidence: What does Digital Footprint Mean? - Web Browsing and Digital Footprints- Digital Footprint examples – How to Protect Your Digital Footprints? - How to erase your Footprints? - Browser Extensions and Search Engine Deletion - Cyber Crime and Cyber Laws - Common Cyber Crimes and Applicable Legal Provisions: A Snapshot - Cyber Law (IT Law) in India – The Information Technology Act of India 2000 - Cyber Law and Punishments in India - Cyber Crime Prevention guide to users – Regulatory Authorities.

Teaching Methods:

Chalk and Talk, Presentation, Seminar, Quiz, Discussion & Assignment

Text Book:

- 1. "Cyber Security", Text Book prepared by "Kongunadu Arts and Science College", Coimbatore -29, 2022. Reference Books:
- 1. Mayank Bhushan, Rajkumar Singh Rathore, Aatif Jamshed, "Fundamental of Cyber Security", BPB Publications, 1st Edition, 2017.
- 2. Anand Shinde, "Introduction to Cyber Security-Guide to the world of Cyber Security", Notion Press, 2021.
- 3. Paul Grishman, "**Cyber Terrorism- The use of the Internet for Terrorist Purpose**", Axis Publication, 1st Edition 2010.
- 4. Shilpa Bhatnagar, **"Encyclopaedia of Cyber and Computer Hacking**", Anmol Publications, 1st Edition 2009.

Web References:

- 1. http://deity.gov.in/ Department of Electronics and Information Technology,
- 2. Govt. of India
- 3. http://cybercellmumbai.gov.in/ Cybercrime investigation cell
- 4. http://ncrb.gov.in/ National Crime Records Bureau
- 5. http://catindia.gov.in/Default.aspx Cyber Appellate Tribunal
- 6. http://www.cert-in.org.in/ Indian Computer Emergency Response Team
- 7. http://cca.gov.in/rw/pages/index.en.do Controller of Certifying Authorities
- $8. \ www.safescrypt.com-Safescrypt$
- 9. www.nic.in National Informatics Centre
- 10. https://www.kaspersky.com/resource-center/definitions/what-is-a-digital-footprint
- 11. https://geekflare.com/digital-footprint/

Unit V

τ	ЈВС	26

Mapping

23UGC3S1

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	М	S	Н
CO2	Н	S	S	Н	S
CO3	М	Н	М	S	Н
CO4	S	Н	Н	М	Н

 $\mathbf{S} - \mathbf{Strong}$

 $\mathbf{H} - High$ $\mathbf{M} - Medium$

 $\mathbf{L} - Low$

Programme Co	de: 07	B. Sc Biochemistry			
Course Code: 23UBC404		Core Paper 4–INTERMEDIARY METABOLISM			
Batch	Semester	Hours/Week	Total Hours	Credits	
2023-2024	IV	4	60	4	

Course Objectives

- 1. To learn the fate of dietarycarbohydrates, proteins and lipids.
- 2. To study the various catabolic and bio synthetic pathways of bio molecules and their significance.
- 3. To understand the inter relationship between carbohydrate, protein and fat metabolism.

Course Outcomes (CO)

	CO1	Understand the various metabolic pathways of carbohydrates, proteins, fat and nucleic acid metabolism
K1	CO2	Remember the glycolysis, TCA cycle, Glycogenesis, glycogenolysis, β- oxidation, phospholipid biosynthesis, Urea cycle, Nucleic acid biosynthetic pathway and degradation of purine and pyrimidine
to K5	CO3	Assessment of Bio 25nergetic of various metabolism pathways, role of inhibitors and uncouple electron transport chain
	CO4	Analysis of regulation of various metabolic pathways and their significance
	CO5	Acquire the knowledge of purine and pyrimidine metabolism and biological significance of uric acid and β -amino isobutyrate.

Total Hours : 60

UNIT I

(12hrs)

Overview of metabolism: Definition; types of metabolic pathways. Fate of absorbed carbohydrates. Glycolysis: definition; significance; pathway; energy yield from glycolysis; regulation of glycolysis. Cori's cycle. Metabolic fate of pyruvate.

TCA Cycle:-reactions of the cycle; bioenergetics; amphibolic pathway; anaplerotic role of TCA cycle.

Pathway of glycogenesis and glycogenolysis; gluconeogenesis: definition; significance; pathway; substrates for gluconeogenesis; regulation of gluconeogenesis.

UNIT II

Biological oxidation: Introduction, high energy compounds, redox potentials; electron transport chain: overview; mitochondrial organization; structural organization of respiratory chain; oxidative phosphorylation; mechanism of oxidative phosphorylation-chemi osmotic hypothesis. Uncouples of oxidative phosphorylation. Transport of reducing equivalents - glycerol-phosphate shuttle and malateaspartate shuttle.

UNIT III

Introduction to lipids. Oxidation of fatty acids: Carnitine cycle; Beta-oxidation, alpha oxidation and omega oxidation.

Biosynthesis of saturated fatty acids: Extra mitochondrial and microsomal system for synthesis of fatty acids. Inter conversion of fatty acids. Bio synthesis and degradation: Lecithin, cephalin, phosphatidylinositol and phosphatidylserine. Plasma lipoproteins (Composition). Bio synthesis of glycolipids.*

UNIT IV

Amino acid pool, overview of amino acid metabolism-deamination (oxidative and non- oxidative), transamination, de carboxylation. Urea cycle. Metabolism of individual amino acids - glycine, phenylalanine and tyrosine.

UNIT V

Interrelationship between carbohydrate fat and protein metabolism. Metabolism of purines: de novo synthesis, salvage pathway, catabolism and regulation. Metabolism of pyrimidines: *de novo* synthesis, salvage pathway, catabolism and regulation. Conversion of ribonucleic acid to deoxyribonucleic acid, allopurinol. Biological significance of uric acid and β -amino isobutyrate.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

(12hrs)

(12hrs)

(12hrs)

(12hrs)

23UBC404

Text Books:

- Deb, A.C. (2011), Fundamentals of Biochemistry, 10th ed., New Central Book Agency Pvt.Ltd., Kolkata700 009.
- Satyanarayana, U.and Chakrapani, U. (2013) Biochemistry, 4th ed., Books and Allied Pvt. Ltd,Kolkata,700010.
- 3. Harper's (2018), Illustrated Biochemistry, 31st ed., Victor W. Rodwell publisher, New Delhi.

Reference Books:

- Robert K. Murray, Daryl K. Granner and Victor W. Rodwell (2008), Harper's Illustrated Biochemistry,29thed,McGraw Hill Companies, Inc. New Delhi.
- 2 Vasudevan D.M., Sreekumari S. and Kannan Vaidyanathan (2011), Text Book of Biochemistry for Medical Students, 6th ed., JAYPEE Brothers Medical Publishers Pvt. Ltd., New Delhi, 110002.
- 3 Moran, Horton, Scrimgeour, Perry& Rawn (2013), Principles of Biochemistry, 5th edition. Pearson New International Edition, UK.
- 4 Jain J.L, Fundamentals of Biochemistry, (2018), S. Chand & Company Ltd, New Delhi.
- 5. Biochemistry, D. Voet and J.G. Voet (2004), 3rd ed.. John Wiley and Sons Inc
- 6 Biochemistry, J.M. Berg, J.L. Tymoczko and L. Stryer (2007), 5th ed., W.H. Freeman & Co.

*Questions may also be taken from the self-study portion

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	Н	S	Н
CO2	Н	S	S	Н	S
CO3	S	S	S	Н	S
CO4	S	S	S	S	S
CO5	S	Н	S	Н	S

S–Strong H–High M–Medium L–Low

23UBC4S2

Programme Co	ode: 07	B. Sc Biochemistry		
Course Code: 23UBC4S2		Skill Based Subject	2- TECHNIQUES IN	BIOTECHNOLOGY
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	IV	2	30	3

Course Objectives

- 1. To provide a broad overview of the common and important techniques in Biotechnology
- 2. To provide sufficient knowledge about the overall biotechnology skills
- 3. To address the aspects of developmental biology, plant and animal tissue culture, fermentation, bioprocessing and bio nanotechnology

Course Outcomes (CO)

	CO1	Recollect the basics of developmental biology
	CO2	Understand the techniques of plant tissue culture
K1	CO3	Describe the process and introduce about bioprocess techniques
to K5	CO4	Acquire knowledge fermentation and its role in biotechnology
	CO5	Remember Bio Nanotechnology and their materials applications

Total Hours :30

(6 hrs)

UNIT I

History & basic concepts of development : Overview of how the modern era of developmental biology emerged through multidisciplinary approaches, stages of development- zygote, blastula, gastrula, neurula, cell fate & commitment – potency- concept of embryonic stem cells, differential gene expression, terminal differentiation

UNIT II

Plant tissue culture - History, Laboratory organization, Sterilization methods, Media preparation, Plant Growth Regulators, Micro propagation, Callus culture, Cell Culture, Organogenesis and Somatic embryogenesis. Haploid production: - Anther, Pollen, Embryo and ovule culture.

(6 hrs)

UNIT III

Animal Biotechnology - History of animal cell culture*, Different types of cell culture media, growth supplements, serum free media, balanced salt solution, Different types of cell culture media, growth supplements, serum free media, balanced salt solution, Culture of different tissues and its application.

UNIT IV

Fermentation & bioprocessing - Introduction to fermentation technology, fermentation processes; Microbial culture; Fermentation media; Natural media; synthetic media, Types of Fermentation: Solid Substrate fermentation and submerged fermentation. Introduction to biomass, downstream processing and upstream processing.

UNIT V

Bio nanotechnology - Nanomaterial in biotechnology - nanoparticles, quantum dots, nanotubes and nanowires. Development of Nano biotechnology. Biological nanoparticles production - plants and microbial. Nano biotechnological applications in health and disease - infectious and chronic.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

- 1. Michael J.F. Barresi and Scott F. Gilbert. (2019), Developmental Biology. 12th ed. Oxford University Press
- 2. An introduction to Plant Tissue culture by MK Razdan. M.K. 2003. Oxford & IBH Publishing Co, New Delhi, 2003.
- 3. Plant tissue culture by Bhojwani. S.S and Razdan. M.K 2004.
- 4. Portner R. 2007. Animal Cell Biotechnology. Humana Press.
- 5. Peter F Stanbury, Allan Whitaker, Stephen J Hall. Principles of Fermentation Technology. (2016)

Reference Books:

1. Butterworth-Heinemann Press. UK. – H. J. Peppler, D. Perlman. Microbial Technology: Fermentation Technology. (2014). Academic Press.

2. Nalwa HS. 2005. Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology. American Scientific Publ.

3. Nanobiotechnology - II more concepts and applications. (2007) - Chad A Mirkin and Christof M. Niemeyer (Eds), Wiley VCH.

*Questions may also be taken from the self-study portion

23UBC4S2

(6 hrs)

(6 hrs)

(6 hrs)

UBC 33

MAPPING

```
23UBC4S2
```

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	Н	S	Н
CO2	S	S	S	S	S
CO3	S	S	Н	S	Н
CO4	Н	Н	S	S	Н
CO5	Н	S	S	Н	S

 $S{\rm -Strong} \quad H - {\rm High} \qquad M{\rm - Medium} \quad L - {\rm Low}$

23UBC4CM

Programme Code: 07		B.Sc. Biochemistry			
Course Code: 23UBC4CM		Title: C.Pr.2 BIOCHEMISTRY			
Batch	Semester	Hours / Week Total Hours Credits			
2023-2024	III & IV	3 90 2			

Course Objectives

- 1. To perceive knowledge about λ max of the substances.
- 2. To learn about the methods to quantify the components colorimetrically.
- 3. To learn about the factors influencing the enzyme activity.

Course Outcomes (CO)

K1 to K5	CO1	Recalling the preparation of reagents.
	CO2	Understanding the principles of techniques.
	CO3	Carrying out the experiments using various techniques.
	CO4	Techniques are used to analyze the components both qualitativelyand quantitatively.
	CO5	Carrying out the experiments using various enzymes factors

List of Programs

1. COLORIMETRY

- **1.** Estimation of glucose Ortho-Toluidine method.
- 2. Estimation of Phosphorus Fiske & Subbarrow method.
- **3.** Estimation of urea DAM TSC method.
- **4.** Estimation of protein Lowry's method.
- **5.** Estimation of creatinine Alkaline- Picrate method.
- 6. Estimation of uric acid Caraway method.

23UBC4CM

2. PREPARATION OF BUFFER SOLUTIONS [Group experiment]

- 1. Determination of pH using pH meter.
- 2. Preparation of buffer solutions.
 - a. Acetate buffer pH range- 3.6 -5.6.
 - b. Phosphate buffer pH range- 5.8 -8.0.

3. ENZYMOLOGY

- a. Effect of pH on the activity of acid phosphatase
- b. Effect of temperature on the activity of acid phosphatase
- c. Effect of enzyme concentration on the activity of acid phosphatase.
- d. Effect of substrate concentration on the activity of acid phosphatase
- e. Determination of acid phosphatase activity
- 4. **TECHNIQUE** (Demonstration Experiments)
- 1. Determination of absorption maximum (λ max) of any two biochemical substances using UV-VISIBLE Spectrophotometer.
- 2. Identification of DNA using UV –VISIBLE Spectrophotometer.

Reference Books

- Jayaraman. J. (2011), Laboratory Manual in Biochemistry, 2nd edition, New age International Pvt, Delhi
- Sadhasivam. S. and Manickam. A. (2008). Biochemical Methods, 3rded., New Age International Publishers Ltd, NewDelhi.
- 3. Martinek, R.: Practical Clinical Enzymology: J. Am. Med. Tech., 31, 162 (1969).
- Gupta. R.C and Bharghava. S (2013), Practical Biochemistry, 5th edition, CBS Publishers and Distributors, New Delhi.
- David. T. Plummer, (2004), An Introduction to Practical Biochemistry, 3rd edition, Tata McGraw Hill Publishing Company Ltd, New Delhi.
- 6. E.J.Wood (1989) Practical Biochemistrycolleges, Elsevier, Pergamon.

23UBC4CM

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	S	S	S
CO2	S	S	Н	S	Н
CO3	S	S	S	S	Н
CO4	Н	S	S	Н	S
CO5	Н	S	S	Н	S

S–Strong

 $\mathbf{H} - \mathrm{High}$

M– Medium

L –Low

23UBC4CM

QUESTION PAPER PATTERN FOR PRACTICAL EXAMINATION

Time: 3 hours Core Practical 2- Biochemistry Max. Marks: 60 marks I. a) Estimate the amount of phosphorus present in 100ml of given unknown solution. (Odd numbered candidates) (Odd numbered candidates)

- b) Determine the Km value of the enzyme acid phosphatase by Michaelis- Menton method (Even numbered candidates) (40)
- **II.** Write the procedures assigned to the above experiments. (10)
- III. Record submitted (10)

ESE Marks

Colorimetric Experiment

No	Details	Marks (Biochemical parameters
		& Enzymology)
1	Tabular Column	5
2	Graph	5
3	Calculation	10
4	Accuracy of Result	20
5	Procedure	10
6	Record	10
	Total	60

CIA Marks

Attendance	05
Observation notebook & Regularity	10
CIA model Practical Test	25 (60 marks will be converted to 25)
Total	40

Programme Code: 07		B. Sc Biochemistry		
Course Code: 23UBC505		Core Paper 5 – HUMAN PHYSIOLOGY & ENDOCRINOLOGY		
Batch	Semester	Hours / Week Total Hours Cred		
2023-2024 V		4	60	4

Course Objectives

1. To understand the basic principles and mechanisms involved during the functioning of various organs of the physiological system.

2. To learn the mechanismof action of hormones, and their role under normal and abnormal conditions of the physiological system.

3. To learn the functions of organs and systems to the maintenance of Homeostasis.

Course Outcomes (CO)

K1 to K5	CO1	Recall of the structure of skeletal muscle, GI tract, lungs, nephrons, neurons and reproductive system
	CO2	Understanding the mechanism of muscle contraction, mechanism of buffer action, transport of gases between tissues and blood, formation of Urine, propagation of nerve application, mechanism of action of hormones.
	CO3	Explanation of sources of energy for muscle contraction, functions of hormones, spermatogenesis, ovarian cycle, chemical changes during muscle contraction.
	CO4	Synaptic transmission of neuro-muscular transmission, pathophysiology of hormones of pituitary, thyroid, parathyroid and adrenal glands.
	CO5	Understand the structure and function of male and female reproductive system

23UBC505

Blood and Body fluids: Composition and function, Red blood cells, Hemoglobin, White blood cells and platelets. Blood coagulation, blood groups and blood transfusion. Formation and functions of lymph. Body buffers.

Nervous system

Nervous system: Structure of neuron, resting potential and action potential, Propagation of nerve – impulses, Structure of synapse, synaptic transmission (electrical and chemical theory). Structure of Neuro muscular junction and mechanism of neuro muscular transmission, Neuro transmitters.

UNIT II (12 hrs)

Digestive System

Structure of GI tract. Secretion of digestive juices- composition and functions of saliva, gastric juice, pancreatic juice, bile and secretion of small intestine (succus entericus). Digestion and absorption of carbohydrates, Digestion and absorption of proteins. Digestion and absorption of fats.

Respiratory SystemStructure of lungs. Diffusion of gases in lungs. Transport of oxygen from lungs to tissues through blood and factors influencing the transport of oxygen. Transport of CO2 from tissues to lungs through blood and factors influencing the transport of CO₂.

UNIT III

(12 hrs)

Excretory System

Structure of kidneys. Structure of nephron. Mechanism of formation of urine, micturition and renal regulation of acid- base balance. Physical properties and composition of urine. Role of renin in reninangiotensin-aldosterone system (RAAS).

Skeletal Muscle

Skeletal muscle- General structure and sarcomere unit. Structure of myosin, actin and regulatory proteins (tropomyosin and troponin). Mechanism of muscle fiber contraction. Chemical changes during muscle of contraction. Sources for muscle contraction. energy

UNIT IV

Male Reproductive System

Structure of male reproductive system and spermatogenesis. Structure and functions of testosterone.

Female Reproductive System

Structure of female reproductive system and oogenesis. Ovarian cycle. Menstrual cycle. Menopause. Pregnancy andlactation. Structure and functions of estrogens and progesterone.

UNIT V

Endocrine System

Endocrine system: Chemical nature of hormones, mechanism of action of hormones – intracellular receptor mechanism and second messenger mechanism (cAMP, cGMP, Ca2+) Structure function and deficiency symptoms of hormones of pituitary, thyroid, parathyroid and adrenal glands. Functions of pancreatic hormones.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books

- Saradha Subramaniam, Madavan kutty K. and Singh H. D. (2012). Textbook of Human Physiology. 6th edition., S. Chand and company LTD. New Delhi.
- H.S.Ravikumar Patil, H.K.Makari, H.Gurumurthy, S.V.Soumya, (2013). A text book of Human physiology. I.K. International Publishing house Pvt. limited.
- Shembulingam K & Prema Shenbulingam, (2019). Essentials of Medical Physiology 8th edition, Jaypee publishers, New Delhi.

Reference Books

- 1. John E.Hall. Guyton & Hall., (2014). Textbook of Medical Physiology. A South Asian Edition.
- Chatterjee. M.N. and Rana Shinde (2005). A Text book of Medical Biochemistry. Jaypee Brothers Medical Publishers Pvt. Ltd, Delhi.
- C.C.Chatterjee, C.C.Chatterjee (2016). Human Physiology VI: 11th edition, Vol (1). CBS publishers & distributers.

(12 hrs)

(12hrs)

23UBC505

- 4. Robert K. Murray., Granner D.K., Mayes P.A. and Rodwell V.W.,(2008). Harpers Illustrated Biochemistry, 27thed., Appleton and Lange Stanford, Connecticut, USA.
- 5. Talwar G.P. (2004), A Text book of Biochemistry and Human Biology, 3rd edition. Printice Hall of India Pvt Ltd, New Delhi.
- John E. Hall, Michael E, Hall Guyton, (2020) Hall Textbook of Medical Physiology 14th edition. Elsevier Health sciences, South Asia.

* Questions may also be taken from the self-study portion

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

MAPPING

S–Strong

H – High

M– Medium

L –Low

Programme Code: 07		B.Sc Biochemistry			
Course Code: 23UBC506		Core Paper 6 – CELL I	BIOLOGY		
Batch	Semester	Hours / Week Total Hours Credit			
2023-2024 V		4	60	4	

Course Objectives

- 1. To perceive knowledge about structure of animal cell membrane and its function.
- 2. To studyabout the mechanism of protein sorting and transport in the biological system.
- 3. To know about the cell cycle and about cancer development.

Course Outcomes (CO)

	CO1	Appreciates and understands the dynamic nature of the cell, including how it occurs and response to the information from its environment.
K1	CO2	Remembers the different mechanism of receptor activation and regulation.
to K5	CO3	Explores the role of growth hormones in the biological system
	CO4	Predict how alterations or given drugs or chemical treatment would impact cell behavior
	CO5	Describe the Cancer and their types, Tumor suppressor genes function and their products

Total Hours :60

UNIT I

(12 hrs)

(12 hrs)

Cell membrane–Introduction to cell and its organelles, cell theory, comparison between plant and animal cell. Fluid Mosaic Model: Biochemical composition (membrane carbohydrates, membrane proteins and membrane lipids) and functions. Membrane transport: Passive transport–simple diffusion and facilitated diffusion, Active transport–simple active transport and specific transporters antiport and symport, bulk transport-phagocytosis and endocytosis.

UNIT II

Protein Sorting and Transport: The endoplasmic reticulum: Protein secretion, Targeting proteins to ER, Protein folding and processing. Smooth ER and post translational modification. Ribosomes: Organization, types and function. Golgi apparatus: Organization, protein glycosylation and transportation of proteins. Lysosomes: Acid hydrolases, endocytosis and lysosome formation. Autophagyand phagocytosis

UNIT III (12 hrs) Cytoskeleton: Chemistry, Organization and function of Microtubules, Microfilaments and Intermediate filaments.

The nucleus: Structure of nuclear envelope; nuclear pore complex; Nucleolus RNA genes-transcription and processing of RNA. Cell division: mitosis and meiosis*.

UNIT IV

Cell signaling: Modes of cell – cell signaling, steroid hormones and nuclear receptor super family, nitric oxide, neurotransmitters, peptide hormones and growth factors. Functions of surface receptors: G- protein - coupled receptors. Pathways of intracellular signal transduction: The cAMP, cGMP, phospholipids and calcium ion pathways.

UNIT V

Cell cycle: Overview of cell cycle and its control. Cell cycle control in mammalian cells, check points in cell cycle regulation. Apoptosis-pathways, regulators and effectors in apoptosis.

Cancer: Types, properties, causes and development. Tumor suppress or genes and functions of their products. Carcinogenic effect of chemicals and radiation.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

- Cooper. G.M.(2009), The Cell: A Molecular Approach, 5th ed., Boston university, ARM press, Washington D.C., USA
- Verma.P.S. and Agarwal.V.K. (2014), Cell Biology, Genetics, Molecular biology, Evolution and Ecology, S. Chand and Company, New Delhi.
- U. Satyanarayana and U. Chakrapani (2013). Biochemistry. Elsevier and Books & Allied (P)Ltd. Kolkata.

Reference Books:

- Harvey Lodish, Baltimore David, Arnold Berk *et al*, (2007), Molecular Cell Biology, 6thed., Scientific American Books, USA.
- Garrette R.H and Grisham, C. M (2012), Principles of Biochemistry, 5th ed, Saunders college publishers, US.

(12hrs)

(12hrs)

- Alberts, Bruce, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Essential of Cell Biology. New York: Garland Science, 2019.
- Pollard, Thomas D., William C. Earnshaw, Jennifer Lippincott-Schwartz, and Graham T. Johnson. Cell biology. 3rd Eds.2017.
- Alberts, Bruce, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Molecular Biology of the Cell. New York: Garland Science, 2002.
- Stephen R. Bolsover, Elizabeth A. Shephard, Hugh A. White, Jeremy S. Hyams. Cell Biology: A Short Course, 3rd Edition. Wiley and Blackwell. 2011.

* Questions may also be taken from the self-study portion

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	Н	S	Н
CO2	S	S	Н	S	S
CO3	S	Н	Н	Н	S
CO4	Н	Н	S	S	Н
CO5	S	Н	S	Н	S

S–Strong

H –High

M– Medium

L–Low

23UBC507

Programme Co	de: 07	B.Sc. Biochemistry		
Course Code: 2	3UBC507	Core Paper 7- CLINICAL BIOCHEMISTRY		
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	V	4	60	4

Course Objectives

- 1. To provide students with a conceptual background in Clinical Biochemistry
- 2. To provide students with an understanding of various types of diseases and their causes,

symptoms, prevention, management and treatment

Course Outcomes (CO)

	CO1	Recall the metabolism of carbohydrates, lipids and proteins
K1	CO2	Describe the disorders of carbohydrate, lipids, protein and amino acids metabolism & assess the gastric, intestinal, liver and kidney functions
to K5	CO3	Demonstrate the types, clinical pathology and diagnosis of disorders of carbohydrate, lipids, protein and amino acids
IX.	CO4	Analyze the blood and serum samples for the diagnosis and prognosis of Diseases
	CO5	Analyze the Liver and Kidney function tests

Total Hours : 60

UNIT I

(12 hrs)

(12 hrs)

Disorders of carbohydrate metabolism: Normal glucose level in blood*, renal threshold value. Hypoglycemia: Definition and causes of hypoglycemia. Hyperglycemia: Definition and causes of hyperglycemia. Glycogen storage Diseases

Diabetes mellitus: Introduction, types of diabetes mellitus; clinical pathology and diagnosis. Glycosylated hemoglobin and its significance.

UNIT II

Disorders of lipid metabolism: Plasma lipids and lipo proteins – Introduction; hyper lipo proteinemia. Type I, II, III, IV and V and A beta lipoproteinemia. Hypolipo proteinemia: α - β -lipo proteinemia, hypo beta lipoproteinemia, Tangier" disease and lecithin – cholesterol acyl-transferase deficiency. Hypercholesterolemia

(12 hrs)

UNIT III

Plasma protein abnormalities. Hypoplasma proteinuria and hyper plasma proteinuria

Disorders of amino acid metabolism: Cystinuria, phenylketonuria and maple syrup diseases. Definition and causes of hypo and hyper uremia. Definition and causes of hypo and hyper uricemia.

UNIT IV (12 hrs)

Gastric and Intestinal functional tests:

Gastric functional tests – Introduction, tests of gastric function – The insulin stimulation test and tubeless gastric analysis. Intestinal functional tests - Introduction, tests used in the diagnosis of malabsorption - determination of total faecal fat (fat balance test), test of monosaccharide absorption (xylose excretion test) and determination of total protein (Lowry's method). Pancreatic function test.

UNIT V

(12hrs)Liver and Kidney function tests. Liver function tests, estimation of conjugated and total bilirubin in

serum (diazomethod), detection of bilirubin and bile salts in urine (Fouchet"s test and Hay"s sulphur test) and marker enzymes: SGOT, SGPT, γ -glutamyl transferase.

Kidney function test: Urea clearance test, creatine clearance test and GFR.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books

- 1. Ambika Shanmugam (2008), Fundamentals of Biochemistry for Medical Students, 7th ed., Published by the Author, Chennai – 600035.
- 2. Deb, A.C. (2011), Fundamentals of Biochemistry, 10th ed., New Central Book Agency Pvt. Ltd., Kolkata 700009.
- 3. Marshall, (2014), Clinical Biochemistry: Metabolic and Clinical Aspects, Elsevier Science Publishers.

Reference Books

- Carl A. Burtis, Edward R. Ashwood, Norbert W. Tietz. (2012). Tietz Textbook of Clinical Chemistry and molecular diagnostics. 5th ed, Saunders college publishing, HarcourtBrace College Publishers, Philadelphia, Newyork, Tokyo.
- Vasudevan D.M, Sreekumari S and Kannan Vaidyanathan, (2011), Text Book of Biochemistry for Medical Students,6th ed., Jaypee Brothers Medical Publishers Pvt. Ltd., New Delhi,110002.
- Thomas M. Devlin (2010) Textbook of Biochemistry with Clinical Correlations, 7th Edition, john Wiley & Sons, Inc,US.
- 4. Peakman M, and Vergani D. (2009). Basic and Clinical Immunology. 2nd edition Churchill Livingstone Publishers, Edinberg.
- 5. Tietz Textbook of Clinical Biochemistry, Carl A. Burtis and Edward R. Ashwood (1998), 3rd ed.. Harcourt Brace & company Asia PTE LTD. W.B. Sauners Company.
- 6. Clinical Biochemistry, Geoffrey Beckett, Simon Walker, Peter Rae, Peter Ashby (2006), 7th ed., Blackwell Publication

* Questions may also be taken from the self-study portion

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	Н	S	Н
CO2	Н	S	М	S	S
CO3	S	Н	Н	S	Н
CO4	Н	Н	S	S	Н
CO5	Н	S	Н	S	Н

MAPPING

S–Strong

M– Medium

 $\mathbf{L} - \mathbf{Low}$

 $[\]mathbf{H} - \mathrm{High}$

Programme Code: 07		B.Sc Biochemistry			
Course Code: 2	3UBC508	Core Paper 8 – MOLECULAR BIOLOGY			
Batch	Semester	Hours / Week	Total Hours	Credits	
2023-2024	V	4 60 4		4	

Course Objectives

- 1. To understand the scientific process in the content of learning the fundamental biological and chemical factors of molecular biology.
- 2. To gain knowledge about DNA replication, DNA repair mechanism and mutation.
- 3. To understand the mechanism of transcription and reverse transcription.
- 4. To acquire the knowledge about gene regulation.

Course Outcomes (CO)

	CO1	Understand the dynamics of protein synthesis with respect to ribosome structure, function and accuracy of translation		
K1	CO2	Remember the Genetic Code and the amino acid which it codes. the role of various enzymes and proteins in DNA replications, transcription and translation		
to K5	CO3	Advanced and integrated knowledge of the process on transcription and DNA recombination and repair process		
	CO4	Explore the process of translation, genetic code and post translational modifications		
CO5 Describe the regulation of gene expression and types of operon and the				

Total Hours: 60

(12 hrs)

Organization of eukaryotic chromosome, Nucleosomes are the fundamental unit of chromatin, types and properties of histones. Chromatin assembly. DNA carries genetic information, Transformation, Transduction, Conjugation, Griffith's Experiment, Avery's Experiment and Hershey – Chase experiment.

UNIT II

UNIT I

(12 hrs)

DNA Replication: DNA Replication, semi conservative mechanism, The Meselson – Stahl experiment, enzymology of DNA replication, initiation, elongation and termination. DNA repair mechanism: excision repair, mismatch repair and SOS response. Inhibitors of DNA replication. Mutation: spontaneous and induced mutation.

UNIT III

Transcription: Central Dogma, Synthesis of RNA, DNA dependent RNA Polymerase, sigma factor, association of RNA polymerase with DNA, initiation, elongation, termination of transcription, post transcriptional modification of RNA, reverse transcription*, RNA directed RNA polymerase.

UNIT IV

Translation: Genetic Code: Features of genetic code, chemical composition of eukaryotic and prokaryotic ribosomes, and activation of amino acids, initiation, elongation and termination of protein synthesis in prokaryotes, post translational modification of proteins and inhibitors of protein synthesis.

UNIT V

Gene Regulation:

Regulation of gene expression in E.coli. Terminology in regulation of gene expression. Types of control of operons ,lactose operon in E.coli, negative regulation and positive regulation, lac operon, arabinose operon and tryptophan operon and its regulation.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

- Ajoy Paul (2007), Text Book of Cell and Molecular Biology, Books and allied Pvt.Ltd. Kolkata.
- 2. G.P. Jayanthi (2009), Molecular Biology, MJP publishers, Chennai
- Vasudevan D.M, Sreekumari S and Kannan Vaidyanathan, (2011), Text Book of Biochemistry forMedical Students,6th ed., Jaypee Brothers Medical Publishers Pvt. Ltd., New Delhi,110002.

Reference Books:

- Robert .H. Tamarin (2008), Principles of Genetics, 7th ed., Tata McGraw Hill Publishing Company Ltd, Kolkata.
- Gardner and Simmon Snustad(2008), Principlesofgenetics, 7th ed., JohnWiley&SonsInc. USA.
- DavidL.Nelson,MichealM.Cox(2008),Lehninger^{**}sPrinciplesofBiochemistry,Replik a press (P) Ltd,India.

23UBC508

(12 hrs)

(12 hrs)

(12 hrs)

- 4. David Freifelder (2004). Molecular Biology.5th edition. Jones & Bartlett Publishers.
- 5. Watson JD, Baker TA, Bell SP, Gann A, Levine M and Losick R (2008) Molecular Biology of the Gene, 6th edition, Cold Spring Harbour Lab. Press, Pearson Publication.
- 6. De Robertis EDP and De Robertis EMF (2006) Cell and Molecular Biology, 8th edition. Lippincott Williams and Wilkins, Philadelphia.

*Questions may also be taken from the self-study portion also

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	Н	S	S
CO2	S	S	S	S	S
CO3	S	S	S	Н	S
CO4	Н	S	S	S	S
CO5	Н	S	Н	S	S

S–Strong

H– High

M – Medium

L –Low

Programme Code: 07		B.Sc Biochemistry		2500000
Course Code: 2	3UBC609	Core Paper 9 – PLANT BIOCHEMISTRY		
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	VI	4	60	4

Course Objectives

- 1. To understand the metabolic processes in plants and role of various biosynthetic pathways.
- 2. To acquire knowledge about photosynthetic apparatus, role of nitrogen in plants and plant growth regulators
- 3. To explore about the photo morphogenesis and secondary metabolites in plants.

C	Jourse Outeo	
	CO1	Recollect the structure and function of plant cell.
K1 to	CO2	Understand the mechanism of photosynthesis in plants.
K5	CO3	Execute the concept of role of minerals and growth hormones in plants.
	CO4	Acquire the Photo morphogenesis function and development of plant
	CO5	Analyze the nature and functions of secondary metabolites

Course Outcomes (CO)

Total Hours :60

UNIT I

(12 hrs)

(12 hrs)

Introduction to plant cell structure*. Photosynthesis: Overview, Pigments – chlorophylls, carotenoids and phycobillins. Photosynthetic apparatus. Photo system I and II – Mechanism of Photosynthesis-cyclic and non-cyclic photo phosphorylation. Light reactions–Red drop and Emerson's enhancement effect, Hill's reaction, Arnons work. Dark reactions: C3, C4 and CAM pathway.

UNIT II

Role of nitrogen in plants. Nitrate reduction. Nitrogen cycle, Nitrogen fixation: non-biological, biological- symbiotic, non-symbiotic and associative. Biochemistry of nitrogen fixation and factors Mineral nutrition in plants: Major elements: Nitrogen, Phosphorus, Sulphur, Calcium, Magnesium and Potassium-specific roles and deficiency symptoms in plants.

Minor elements: Iron, manganese, copper, zinc, boron, molybdenum, chlorine and nickelspecific roles and deficiency symptoms in plants controlling biological nitrogen fixation.

23UBC609

tannins.		
Teaching Methods		

Chalk and board/Powerpoint presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

UNIT III

UNIT IV

UNIT V

tannins.

legumes and cereals.

gibberellins, cytokinins, abscisic acid and ethylene.

Vitamins in plants: occurrence and biological functions.

- 1. Jain. V. K. (2013)., Fundamentals of Plant physiology, 17th ed., S. Chand and Company Ltd, New Delhi, India.
- 2. Verma. P. K. (2005)., Text Book of Plant Physiology, 8th ed., EMKAY Publications, Bhopal.
- 3. Aggarwal Ayush. Plant biochemistry. Pacific Books International.

Reference Books:

1. Buchanan, B. B., Gruissem, W., Jones, R. (2015), Biochemistry and molecular biology of plants, 2ndedition, Wiley Blackwell publishers, USA.

- 2. Hopkins .W. G.(2008), Introduction to Plant Physiology, 2nd ed., John Wiley and sons Publishers, UK.
- 3. Heldt. H. W. (2005). Plant Biochemistry, 3rd edition. Academic Press, USA.

4. Hans-Walter Heldt, Birgit Piechulla. Plant Biochemistry. 2021. 5th Ed. Academic Press

- 5. Florence Gleason, Raymond Chollet, Jones and Bartlett. Plant Biochemistry. 2021. Jones and Bartlett
- 6. Caroline Bowsher, Alyson Tobin. Plant Biochemistry. 2021. 2nd Eds. Garland Science

*Questions may also be taken from the self-study portion

UBC 52

Plant growth regulators: Chemistry, biosynthesis, physiological effects, applications of auxins,

Photo morphogenesis: Photo periodism. Phytochrome - Function in growth and development of

Plant. Biochemistry of seed germination. Biochemistry of fruit ripening. Seed storage proteins in

Secondary metabolites: Classification, Biosynthetic pathways (structures not needed) and biological

functions of terpenes, alkaloids, cyanogenic glycosides, phenolics, flavonoids (anthocyanins) and

23UBC609

(12 hrs)

(12 hrs)

(12 hrs)

MAPPING

23UBC609

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	S	S	S
CO2	S	S	S	Н	Н
CO3	S	S	Н	S	S
CO4	Н	S	S	Н	М
CO5	Н	S	Н	S	Н
S– Strong	$\mathbf{H} - \mathrm{Hig}$	h	M – Medium	L –Lov	V

Programme Code: 07		B.Sc Biochemistry		
Course Code	: 23UBC610	Core Paper 10 – IMMUN	OLOGY AND IMM	UNOTECHNIQUES
Batch	Semester	Hours / Week Total Hours Credits		
2023-2024	VI	4	60	4

Course Objectives

1. To learn about the basic principles of immunology, functioning of immune system, and immunological techniques in clinical and research laboratories.

2. To comprehend about the different types of immune mechanisms involving in various abnormal conditions and diseases.

Course Outcomes (CO)

W 1	CO1	Learning the basics of immunity and immune system, formation role of cytokines, different features of antigens and antibodies.
K1 to K5	CO2	Understanding of the mechanism of antibody and cell mediated immunity, action of complement system.
	CO3	Learning the development of various clinical conditions during the different abnormal conditions.
	CO4	Define the Autoimmune diseases and AIDS development of clinical symptoms
	CO5	Applications of antigen – antibody reactions in the diagnosis of various infectious diseases using different techniques.

Total Hours:60

UNIT I

(12 hrs)

Immunity- Definition and types. Innate immunity- Definition; Physical, biochemical, cellular and genetic factors. Acquired immunity - active and passive . Child Immunization chart*. Cells of the immune system- B and T lymphocytes, Natural Killer cells, Macrophages, Antigen presenting cells, Eosinophils, Basophils, Neutrophils, Dendritic cells and Mast cells. Lymphoid organs – Primary (Thymus, Bursa of Fabricius and Bone marrow) and Secondary lymphoid organs (Spleen , Lymph node and MALT).

(12 hrs) Antibody mediated immunity – Definition; Maturation of B – lymphocytes; Activation of B – lymphocytes by antigens and production of antibodies. Primary and secondary immune responses. Cell mediated immunity – Definition; Maturation and types of T-lymphocytes; Activation of TH cells; Cytokines–definition and types. Functions (any four) of Inter leukins (IL-1, IL-2, IL-4, IL-12), Interferons(IFNs), Tumor necrosis factor(TNFs), Colony stimulating factors (CSFs). Cytotoxic activity of Tc, NK and K cells.

UNIT III

Antigens– Definition, Characteristic features of antigens, Cross reactivity, Haptens and adjuvants. MHC (Major Histocompatability Complex) - Definition with examples (HLA and H-2). MHC antigens - Definition and Classification (structures not required).MHC Restriction. Antibodies - Definition. Structure of Immunoglobulin (with reference to IgG); Classification of immunoglobulins; Properties and biological functions of immunoglobulins (IgG, IgM, IgA, IgD and IgE); Complement system - Definition and components of complement system; Classical complement pathway, alternate pathway. Phagocytosis and Inflammation.

UNIT IV

(12 hrs)

(12 hrs)

Hypersensitivity – Definition, types, and clinical manifestation: Type I, II, III and IV and their clinical manifestations. Autoimmune diseases – Definition; Myasthenia gravis, Rheumatoid arthritis and Grave"s disease. Transplantation – Definition and classification. Mechanism and complications of allograft rejection. AIDS -Definition. AIDS virus - structure. Mechanism of action of AIDS virus on T-cells, Development of disease and Clinical symptoms.

UNIT V

(12 hrs)

Antigen antibody interactions –formation of precipitation, and agglutination- precipitin curve test. Agglutination- blood grouping and Widal test. Precipitation- Double immunodiffusion (Ouchterlony procedure), Radial immunodiffusion, Immunoelectrophoresis, Rocket immune diffusion, Counter current immune diffusion, Fluorescent antibody technique, Radio Immuno Assay (RIA), Enzyme Linked Immunosorbent Assay (ELISA), Western blotting technique, Immunohistochemistry.

UNIT II

Teaching Methods

Chalk and Board/Powerpoint presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

- Ananthnarayanan. R and Jayaraman Panikar C.K. (2009). Text book of Microbiology, 8th edition, Orient Longman Ltd, Madras.
- 2. Delves P, Martin S, Burton D, Roitt IM. (2006). Roitt's Essential Immunology.11th edition WileyBlackwell Scientific Publication, Oxford.
- 3. Arvind Kumar. (2013)Textbook of immunology. TERI Publications.

Reference Books

- David Male, Jonathan Brastoff, Roitt Ivan and David Roth (2012). Immunology, 8thed., Times mirror, International Gower Medical Publishing Ltd, printed by Grajos SA, Arts Sobrepapel, Barcelona, Spain.
- 2. Peter Delvis, Seamus Martin, Dennis Burton and Evan Roitt (2012). Roitt"s Essential Immunology, Wiley Blackwell Publishers.
- Judyowen, Jenni punt, Sharon Stanford, Patricia Jones (2018). Kuby Immunology. Macmillan learning.
- <u>B.Annadurai</u> ,A Textbook of Immunology and Immunotechnology, (2008) <u>S. Chand</u> <u>Limited</u> India.
- 5. Richard C and Geiffrey S. (2009). Immunology. 6th edition. Wiley Blackwell Publication.
- 6. <u>Ashim K. Chakravarty</u>, Immunology and Immunotechnology, (2006) <u>Oxford</u> <u>University Press</u>, England, UK

*Questions may also be taken from the self-study portion

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	М	М	М	Н	Н
CO2	S	S	S	S	S
CO3	Н	М	Н	Н	Н
CO4	S	S	S	S	S
CO5	S	Н	S	S	Н
- Strong	H – H	ligh	M– Medium	L –I	LOW

ProgrammeCoo	le: 07	B.Sc Biochemistry			
Course Code:23	3UBC611	Core Paper11–GENET	IC ENGINEERING		
Batch	Semester	Hours/Week	Total Hours	Credits	
2023-2024 VI		4	4 60		

Course Objectives

- $1. \ To provide students with a broad conceptual background in the field of genetic engineering$
- 2. TodescribethemethodsusedtocreaterecombinantDNAmoleculesandintroducethemintoprokaryotic

cells

UNIT I

3. To expose the students to the application of genetic engineering in medicine and agriculture

Course Outcomes (CO)

	CO1	Recognize the concept of recombinant DNA technology or genetic engineering
	CO2	Describe arrange of techniques in gene manipulation, the cloning vectors available and the containment procedures
K1 to	CO3	UnderstandingthetechniquesofDNAsequencing,Geneticfingerprinting,andPCRa pplications
K5	CO4	ExaminethedifficultiesduringtheexpressionofeukaryoticDNAinprokaryotesandh ow to overcome these difficulties
	CO5	Demonstrate the application of transgenic plants with herbicide resistance, virus resistance, pestresistance and male infertility and the production of recombinant insulin

Total Hours :60

(12 hrs)

Genecloning-introduction, basicstepsingenecloning; methodstogeneratedesired foreigngenesisolation of prokaryotic geneby restrictionenzyme, isolation of eukaryotic geneby DNA synthesis. Joining DNA molecules: ligases, linkers and homopolymers. Cloning vectors-characteristics of an ideal vector molecule: natural vectors- *E. coli* plasmids; *in-vitro* vectors – pBR322; λ -phage; singlestranded vector-M13.

UNIT II

Expression vectors of *E.coli*: Constituents; examples of promoters–expression cassettes–problems caused in expression of eukaryotic genes; fusion proteins. Production of recombinant insulin.Safety aspects, ethics and hazards of genetic engineering*, HGP: objectives and applications.

UNIT III

Introduction of rDNA into bacterial cells: Transformation of *E.coli*-preparation of competent cells and uptake of DNA by cells ; selection for transformed cells. Identification of recombinants – insertional inactivation, blue white selection. Genomic library and cDNA library. Identification of a clone from gene library-Southern, Northern and Western blotting techniques.

UNIT IV

DNA sequencing: Outline of Sanger's method. Genetic finger printing-technique and applications. *In vitro* mutagenesis: site directed mutagenesis, protein engineering. Basic PCR – Technique and applications;

UNIT V

Gene transfer in plants: Ti plasmid vectors; mechanism of T-DNA transfer, virulence genes, electro fusion, biolistics process. Applications of transgenic plants – herbicide resistance, male infertility, virus resistance, pest resistance, antisense RNA.

Teaching Methods

Chalkandboard/Powerpointpresentation/Seminar/Quiz/Discussion/Assignment

Text Books:

- 1. S.B. Primrose and R.M.Twyman (2001).Principles of Gene Manipulation and Genomics.7th ed. Blackwell Publishing, UK.
- 2. Satyanarayana, U. (2007), Biotechnology, Booksand Allied (P)Ltd, Kolkata, 700010.
- 3. Kumaresan,K(2010).Biotechnology,revisededition,SARASpublication,Kanniyakumari,India.

Reference Books:

- 1. T.A. Brown(2015), GeneCloningandDNAanalysis, 7thed., BlackwellpublishingLtd, UK.
- 2. BernardR.Glick,JackJ.Pasternak,CherylL.Patten(2010).MolecularBiotechnology:Principlesand ApplicationsofRecombinantDNA,4thed.,ASMPress,USA.

*Questions may also be taken from these self study portion

(12hrs)

(12hrs)

(12hrs)

(12hrs)

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	Н	Н	S	S	S
CO2	S	Н	S	S	Н
CO3	S	S	Н	S	Н
CO4	Н	S	S	Н	М
CO5	Н	S	S	Н	S

 $S-Strong \qquad H-High \qquad M-Medium \qquad L-Low$

23LIBC6S3

Programme Co	de: 07	B.Sc Biochemistry		
Course Code: 2	3UBC6S3	Skill Based Subject 3– TECHNIQUES IN GENOMICS AND PROTEOMICS		
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	VI	2	30	3

Course Objectives

- 1. To perceive knowledge about structure of animal cell membrane and its function.
- 2. To studyabout the mechanism of protein sorting and transport in the biological system.
- 3. To know about the cell cycle and about cancer development.

Course Outcomes (CO)

	CO1	Recollect the organization of the nuclear DNA and mapping
K1	CO2	Get thorough knowledge about human genome project and sequencing
to K5	CO3	Update the knowledge about comparative genomics
N)	CO4	Understanding the transcriptomics and Pharmacogenomics applications
	CO5	Analyze the applications of proteomics in various diseases

Total Hours: 30

(6 hrs)

(6 hrs)

UNIT I

Genomics: Definition, omics and its importance. Organization of nuclear DNA and mitochondrial DNA in eukaryotes. Telomeres, Centromeres* and Transposons. RFLP and RAPD. BAC libraries and cDNA libraries. Mapping of genome- molecular markers, cytogenetic maps, physical mapping-Restriction mapping, Fluorescent in situ hybridization technique, Radiation hybrid mapping, sequence tagged site mapping. Gene editing- Crispr/Cas 9.

UNIT II

Sequencing techniques: High throughput sequencing and shotgun sequencing. PCR and RT-PCR. Complementary DNA (cDNA). Human Genome Project (HGP) - features. Positional cloning. Identifying disease genes and Gene therapy

UNIT III

Comparative genomics – Definition and its importance. Ortholog and Paralog. Comparative genomics of model organisms- bacteria, C.elegans and Drosophila. Synthetic genomes and their applications.

UNITIV

Transcriptomics-Definition and applications; DNA microarray and RNA - Seq analysis .Messenger RNA (mRNA) in the cell. Northern blot. Expression profiling and microarray data analysis. Pharmacogenomics.-Introduction and applications. Drug designing and Genetic tests.

(6 hrs)

(6 hrs)

23UBC6S3

UNIT V

(6 hrs)

Proteomics- Definition, structural genomics-MALDI-ToF Mass spectrometry (MS), PFGE. Functional genomics: 2D gelelectrophoresis. Protein microarray. Peptide finger printing.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

- 1. Brown T.A. (2015). Gene Cloning and DNA analysis, 7th ed., Blackwell publishing Ltd, UK.
- 2. Primrose S.B and Twyman (2006).Principles of Gene Manipulation and Genomics. 7th ed.,Blackwell Publishing, USA.

Reference Books:

- 1. Stracham.T and Read.A.P.(2004), Principles of Human Molecular Genetics, 3rd edition. Garland Science Publication, NewYork.
- 2. Clark. D. P. and Pazdernik.N. J (2009). Biotechnology applying the Genetic revolution, ElseiverAcademic Press, USA.

* Questions may also be taken from the self study portion

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	Н	S	Н
CO2	S	Н	S	Н	S
CO3	S	S	S	S	Н
CO4	Н	S	S	S	М
CO5	Н	S	Н	S	Н

MAPPING

S–Strong

 $\mathbf{H} - High$

M– Medium

L –Low

23UBC6CN

Programme Co	de: 07	B.Sc Biochemistry		
Course Code: 2	3UBC6CN	C.Pr.3. BIOCHEMIST	TRY	
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024	V & VI	4	120	3

Course Objectives

1. To make students learn the methods of collection of blood and urine samples and separation of serum

2. To analyze the biochemical parameters in urine and blood samples and indicate their clinical significance

3. To demonstrate the kit methods for the assayof bio chemical parameters

Course Outcomes (CO)

	CO1	Apply various techniques for the assayof important biochemical parameters and interpret their values
K3 to	CO2	Calculate the values from the graph obtained in the experiment
K5	CO3	Estimate the levelof bilirubin, SGOT, SGPT, LDH, CKMB in the given sample using kit method
	CO4	Understanding the quantitative estimation of Glucose and Calcium in urine
	CO5	Analyze the quantitative estimation of biochemical parameters in blood

List of programs

I. Quantitative estimation of the following in urine

- 1. Glucose Benedicts method
- 2. Calcium Permanganate method3

23UBC6CN

II. Quantitative estimation of the following in the blood

- 1. Glucose Ortho-Toluidine method.
- 2. Urea DAM TSC method.
- 3. Cholesterol Zak's method
- 4. Phosphorus Fiske and Subbarrow method
- 5. Uric acid Caraway Method
- 6. Iron and Hemoglobin Wong's method
- 7. Totalprotein, Globulin and A:G ratio

III. Group Experiments (kit method)

- 1. Bilirubin Direct and Indirect.
- 2. SGOT.
- 3. SGPT.
- 4. LDH
- 5. CKMB

Reference Books

- 1. S.P. Singh (2013), Practical Manual of Biochemistry, 7th ed., CBS Publishers and Distributors, New Delhi.
- 2. Sadhasivam. S. and Manickam. A. (2008). Biochemical Methods, 3rd ed., New Age International Publishers Ltd, New Delhi.
- 3. Shivaraja shankara, Y.M.(2018).Laboratory manual for practical Biochemistry, Jaypee Brothers Medical Publishers(P) Ltd, New Delhi.

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	Н	Н	S	S	S
CO2	S	Н	S	S	Н
CO3	S	S	Н	S	Н
CO4	Н	S	S	Н	М
CO5	Н	S	Н	Н	S

Core Practical 3 Biochemistry

23UBC6CN

QUESTION PAPER PATTERN FOR PRACTICAL EXAMINATION

Time : 6 hours

Max. Marks: 60 marks

I. For odd numbered candidates. Estimate the amount of glucose present in 100ml of the urine sample by Benedict'ss method. (or)
For even numbered candidates. Estimate the amount of calcium present in 100ml of the given urine sample by permanganate method. (20)

II. For odd numbered candidates. Estimate the amount of urea present in 100 ml of the given serum sample by DAM-TSC method. (**or**)

For even numbered candidates. Estimate the amount of uric acid present in 100 ml of the given serum sample by caraway method. (20)

III. Write the procedures assigned to the above experiments.(10)

IV. Record submitted(10)

23UBC6CN

Quantitative analysis

ESE Marks

No	Details Marks				
	I Urine Analysis				
1	Procedure	7			
2	Tabular Column	5			
3	Calculation 5				
4	Accuracy of Results 8				
	Total	25			
	II Blood Analysis				
1	Procedure	5			
2	Tabular Column	4			
3	Graph				
4	Calculation	4			
5	Accuracy of Results	8			
	Total	25			
	Record	10			
	Total	60			

CIA Marks

Attendance	05
Observation notebook & Regularity	10
CIA model Practical Test	25
	(60 marks will be converted to 25)
Total	40

23UBC6CO

Programme Co	de: 07	B.Sc Biochemistry		
Course Code: 23UBC6CO		C.Pr.4. BIOCHEMISTRY		
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	V & VI	2	60	2

Course Objectives

- 1. To isolate plasmid DNA and genomic DNA, isolation and restriction digestion of DNA through demonstration experiments
- 2. To perform simple staining, gram staining and negative staining, isolation of microbes and biochemical tests for identifying bacteria
- 3. To demonstrate media preparation, callus initiation in plant tissue and mitosis in onion root tips

Course Outcomes (CO)

K3 to K5	CO1	Recall the methods of genetic technology and Employ molecular methods in isolation, restriction digestion and separation of DNA		
	CO2	Recall the microbiological methods and performing of staining, plating techniques		
	CO3	Analyze biochemical tests for identifying microorganisms		
	CO4	Familiarize the techniques of plant tissue culture and cell biology through demonstrations		
	CO5	Introducing bioinformatics tools and learning basic tools on proteomics and genomics		

List of programs

GENETIC TECHNOLOGY

- a. Estimation of DNA by diphenylamine method
- b. Estimation of RNA by orcinol method
- c. Preparation of buccal smear
- d. Separation of DNA by agarose gel electrophoresis(Demo)
- e. Isolation of Plasmid DNA from bacteria(Demo)
- f. Isolation of Genomic DNA from liver/plant/bacterial source(Demo)

23UBC6CO

MICROBIOLOGY

- a. Isolation of pure culture serial dilution, pour plate, spread plate and streak plate.
- b. Simple staining, Gramstaining and Negative staining.
- c. Biochemical tests for identification of Bacteria.
- d. Isolation of microbes from samples sewage/ water/ soil.
- e. Antibiotic Sensitivity Test Kirby Bauer Method

PLANT BIOTECHNOLOGY (Demonstration)

- a. Preparation of media and sterilization.
- b. Initiation of callus culture.

BIOINFORMATICS

- a. Analytical tools for sequences databanks: BLAST, FASTA, Pair wise alignment- Multiple alignment- Clustal W.
- b. Structural databanks: Protein databank(PDB)
- c. In silico analysis of Proteins

Reference Books

- 1. Sadhasivam. S. and Manickam. A. (2008). Biochemical Methods, 3rd ed., New Age International Publishers Ltd, New Delhi.
- 2.Ramnik Sood(2003), Medical Laboratory Technology, 5th ed., (reprint), Jaypee brothers, Medical Publishers Private Ltd, New Delhi.
- 3. Kannan. N. (2002), Laboratory Manual in General Microbiology, Panima publishing corporation, Delhi.

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	Н	S	М
CO2	S	S	S	Н	Н
CO3	Н	S	Н	S	Н
CO4	Н	S	S	Н	М
CO5	Н	S	Н	S	S

MAPPING

S–Strong

Core Practical 4 –Biochemistry QUESTION PAPER PATTERN FOR PRACTICAL EXAMINATION

23UBC6CO

Max. marks : 60marks

I. a) Estimate the amount of DNA present in the given sample by Diphenylamine method

(or)

b) Estimate the amount of RNA present in the given sample by Orcinol method 35marks

II. a) Using simple staining method determine the microorganism in the given sample

(or)

b) Identify the microorganism in the given sample by the method of gramstaining **15marks**

III. Record

10marks

Time: 4 hours

Core Practical 4 – Biochemistry

ESE Marks

23UBC6CO

No	Details	Marks
	I. GeneticTechnology	
1	Procedure	10
2	Tabular Column	5
3	Graph	5
4	Calculation	5
5	Accuracy of Result	10
	Total	35
	II Microbiology	
1	Procedure	5
2	Report	10
	Total	15
	III Record	10
	Total ESE	60

CIA Marks

Attendance	05
Observation notebook & Regularity	10
CIA model Practical Test	25
	(60 marks will be converted to 25)
Total	40

UBC	71
000	

				23UBC6CP
Programme Code: 07		B. Sc Biochemistry		
Course Code: 23UBC6CP		C.Pr.5. BIOCHEMIST	RY	
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	V & VI	2	60	2

- 1. To estimate chlorophyll, starch, total phenols and qualitatively analyze various secondary metabolites in plant sample
- 2. To determine RA and pregnancy tests using kit method
- 3. To demonstrate RBC count, total and differential count of WBCs and identifying blood groups

Course Outcomes (CO)

	CO1	Practice techniques of different plant component isolation and qualitative analysis of secondary metabolites
K3	CO2	Performing quantification methods of chlorophyll, starch and total phenols present in plant sample
to K5	CO3	Recollecting the techniques antigen- antibody interactions in immunological kit methods
	CO4	Learning identification of blood groups
	CO5	Calculate the number of RBC and WBCs

List of programs

PLANT BIOCHEMISTRY

- a. Qualitative Analysis of Secondary Metabolites Alkaloids, Flavonoids, Saponins and Glycosides
- b. Estimation of chlorophyll.
- c. Estimation of starch.
- d. Estimation of total phenols.

IMMUNOLOGY

- a. Widal test (kit method)
- b. Simple and double immunodiffusion test (kit method)

PHYSIOLOGY (Demonstration)

- a. Identification of blood groups.
- b. Enumeration of RBCs.
- c. Enumeration of total WBCs.
- d. Differential count of WBCs.

Reference Books

- 1. Sadhasivam. S. and Manickam. A. (2008). Biochemical Methods, 3rd ed., New age InternationalPublishers Ltd, NewDelhi.
- 2. Kannan. N. (2002), Laboratory Manual in General Microbiology, Panima publishingcorporation, Delhi.
- 3. Ramnik Sood (2003), Medical Laboratory Technology, 5th ed., (reprint), Jaypee brothers, MedicalPublishers Private Ltd, NewDelhi.

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	Н	S	Н
CO2	S	S	S	Н	Н
CO3	S	М	Н	S	Н
CO4	Н	S	S	Н	S
CO5	S	Н	S	S	Н

Core Practical 5 – Biochemistry

QUESTION PAPER PATTERN FOR PRACTICAL EXAMINATION

23UBC6CP

	Time:4hours	Max. marks: 60marks
I.	a) Estimate the amount of starch present in the given sample (or)	
	b) Estimate the amount of total phenols present in the given samp	ole 35 marks
II.	a) Examine the given urine sample whether it contains HCG Horr	none (or)
	b) Analyze the serum sample for RA Factor	15 marks
Ш.	Record	10marks

Core Practical 5 – Biochemistry

23UBC6CP

ESE

No	Details	Marks
	I. Plant biochemistry	
1	Procedure	10
2	Tabular Column	5
3	Graph	5
4	Calculation	5
5	Accuracy of Result	10
	Total	35
	II Immunology	
1	Procedure	5
2	Report	10
	Total	15
	III Record	10
	Total ESE	40

CIA

Attendance	05
Observation notebook & Regularity	10
CIA model Practical Test	25 (60 marks will be converted to 25)
Total	40

Programme Code: 07		B. Sc Biochemistry		
Course Code: 23UBC6Z1		PROJECT		
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	VI	4	60	5

COMPONENTS FOR PROJECT

Maximum marks: 100

CIA/ESE	Particulars	Project out of 100marks
CIA	Project review	15
	Regularity	5
	Total internal marks	20
ESE*	Project report present	60
	Viva voce	20
	Total external marks	80
	Total marks (CIA+ESE)	100

*Project report and viva voce will be evaluated jointly by both the project supervisor (Faculty of department) and an External examiner.

23UBC6Z1

MAJOR ELECTIVE PAPERS

Programme Code: 07	B.Sc Biochemistry			
Major Elective – MICROBIOLOGY				
Batch Hours/Week Total Hours Credits				
2023-2024	4	60	5	

- 1. To provide students with a conceptual background in microbiology
- 2. To provide students with an understanding of various microbiological techniques
- 3. To make the students to be familiar with the relationship between microbes and human beings

Course Outcomes (CO)

K1 to	CO1	Recall the characteristics of bacteria, algae, fungi and viruses
	CO2	Describe the role of microbes as normal flora and as disease causing agents
K5	CO3	Demonstrate the microscopic techniques, staining and culturing methods
	CO4	Recollect the microbial diseases and their symptoms and prevention
	CO5	Analyze the bacteriological examination and purification of drinking
		water

Total Hours:60

(12 hrs)

Introduction to microbiology, Microscopy Bright field microscopy, fluorescent microscopy, electron microscopy-transmission electron microscopy, scanning electron microscopy. Culture techniques for isolation of bacteria-streak plate technique, pour plate technique. Staining- Simple staining, flagella staining, gram staining, acid-fast staining.

UNIT II

UNIT I

Prokaryotes: Morphology of bacteria, component parts, cell wall structure, growth curve, media composition. Eukaryotes: Morphology, characteristics and importance of algae and fungi.

UNIT III

Viruses: Cultivation of viruses using fertilized eggs and animal cell culture, structure of viruses, plaque assay.Bacteriophages– T_4 phage, stages in lifecycle; Lambda phage-lifecycle; switch between lysogeny and lyticcycle. Oncogenic viruses– oncogenicDNAviruses-SV40;oncogenic RNA viruses-HIV

(12 hrs)

UNIT IV

Microbial diseases: Normal human micro flora, host parasitic interaction, exo and endotoxins. Water borne diseases– Aetiology, pathogenesis and symptoms of cholera and dysentery. Air-borne diseases–Aetiology, causes, symptoms and prevention of TB and diphtheria. Direct contact disease–Aetiologyand symptoms of rabies*.

UNIT V

(12 hrs)

Water microbiology: Microbes in water; bacteriological examination of water; purification of drinking water. Soil microbiology: Rhizosphere and mycorrhiza. Microbiology of food borne diseases: Botulism, staphylococcal poisoning, salmonellosis and perfringens poisoning.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

1. Micheal J. Pelczar, E.C.S. Chanand Noel R.Krieg (2008), Microbiology5thed., Tata McGraw

-Hill Publishing Company Ltd, New Delhi.

2. R.C.Dubey and D.K.Maheshwari (2005), Text Book of Microbiology, S Chand and Company Ltd. New Delhi.


Reference Books:

- 1. Geetha Sumbali and R.S. Mehrotta (2009), Principles of Microbiology, Tata McGraw Hill Education private limited, New Delhi.
- 2. Joanne Willey ,LindaSherwood, ChristopherJ. Woolverton(2016), Prescott's Microbiology

10thed., McGraw-HillEducation, Chennai, Tamilnadu.

^{*}Questions may also be taken from the self-study portion MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	Н	S	Н
CO2	Н	S	М	S	S
CO3	S	Н	Н	S	Н
CO4	Н	Н	S	S	Н
CO5	Н	S	Н	S	Н

Programme Code: 07	B.Sc Biochemistry				
Major elective- BASICS OF BIOINFORMATICS					
Batch	Hours / Week	Total Hours	Credits		
2023-2024	4	60	5		

- 1. To know about various tools for data base search.
- 2. To acquire knowledge about different biological databases.
- 3. To provide knowledge about Gene prediction and drug designing.

Course Outcomes (CO)

	CO1	Recognize the available bioinformatics resources on web like DNA and protein		
K1		databases		
to	CO2	Understand concepts of similarity searching databases and algorithms		
K5	K5 CO3 Construct genome annotations and algorithms			
	CO4	Outline the concepts of structure based drug design, protein structure levels and databases		
	CO5	Analyze the biological sequence databases and their tools		

Total Hours: 60

UNITI

(12 hrs)

Bioinformatics -Overview and application. Bioinformatics resources on web*. PubMed .Nucleic acid databases GENBANK, DDBJ and EMBL. Sequence submission and file formats. Protein sequence data bank SWISSPROT, UNIPROT. Data mining of biological database with ENTREZ.

UNIT II

(12 hrs)Data base similarity searching -Local and Global alignment. BLAST and FASTA. Similarity searching algorithms and program, dot plot.

UNIT III

Genome annotation- analysis of regulatory regions in genome- promoters, splice site, termination signals. ORF prediction. Algorithms for gene prediction.

UNIT IV

(12 hrs)

Protein structure-levels, basic physio chemical properties, Mol weight, amino acids, transmembrane region and tools in ExPASY. Secondary structure prediction: Chou-Fasman and GOR methods. Tertiary structure prediction.3D structure prediction-homology modeling.

(12 hrs)

UNIT V

Biological databases Nucleic acid sequence databases. Molecular visualization tools RasMol and Chime.

Teaching Methods

Chalk and board/Powerpoint presentation/Seminar/Quiz/Discussion/Assignment

Text books:

- 1. Rastogi. S. C, Namita Mendiratta and Parag Rastogi, (2004) BioInformatics Concepts, Skills and applications, Rastogi Publications, Meerut, India.
- 2. Ignatchimuthu, S, (2009), Basic Bioinformatics, Narosa Publishing House Pvt Ltd, New Delhi.
- 3. Ruchi Singh (2014). Bioinformatics: Genomics and Proteomics. S. Chand & Company Pvt. Ltd. NewDelhi.

Reference books:

- 1. Attwood. T. K. Parry D.J. and Smith (2001). Introduction to BioInformatics, Prentice Hall Publishers, Pearson Education, India.
- 2. Mani.K and Vijayaraja (2005), BioInformatics A practical Approach, Aparna Publications, Coimbatore.
- 3. Dr. P. Shanmughavel, (2006), Trends in Bioinformatics, Pointer Publishers, Jaipur, India.

* Questions may also be taken from the self study portion

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	S	S	S
CO2	S	Н	S	Н	S
CO3	S	Н	Н	S	Н
CO4	Н	S	S	Н	S
CO5	Н	S	Н	S	Н

MAPPING

S–Strong

L –Low

 $[\]mathbf{H} - High$

M– Medium

	UBC 81					
Programme Code: 07	B.Sc Biochemistry					
Major Elective – BIOPHARMACEUTICALS						
Batch	Hours / Week	Total Hours	Credits			
2023-2024	4	60	5			

- 1. To demonstrate the basics of biopharmaceutical to the under graduate students.
- 2. To motivate the undergraduate students in analyzing the drug metabolism and mode of action.
- 3. To elaborate basic of formulations of drugs and to apply them in clinical trials.

Course Outcomes (CO)

K1	CO1	Acquire knowledge on drug development, principles, mechanism of actions of drugs
to	CO2	Outline on preparation of biotechnology oriented pharmaceutical products.
K5	CO3	Qualitycontrol tests and manufacturing, packaging of drugs
	CO4	Help them to analyze the pharmaceutical products available in the market and Evaluate the recent advances in drug manufacturing
	CO5	Relate the regulations in clinical trial and management.

Unit I

Drugs: Introduction - Development of Drugs and Pharmaceutical Industry. Drug Metabolism and Pharmacokinetics - ADME – Physico-Chemical Principles –Pharmacodynamics – Routes of drug administration – enteral, parenteral and topical. Action of drugs in humans.

Unit II

(12 hrs)

(12 hrs)

Total Hours: 60

Manufacturing Principles: Compressed tablets – wet granulation, – Dry granulation – Direct compression – Tablet presses formulation – Coating – Pills – Capsules sustained, action dosage forms. Quality control tests for tablets and capsules. Packaging of solid dosage forms.

Unit III

Formulations: Manufacturing Principles – Parental, solutions – Oral liquids – injections – Ointments. Quality control tests for semisolid and liquid dosage forms. Packaging of semisolid and liquid dosage forms.

(12 113)

Pharmaceutical Products – Vitamins and Antiseptics - Pharmaceutical Vitamins, Cold remedies, Laxatives, Analgesics, External Antiseptics, Antacids and Antibiotics, Biological hormones, recent advances in the manufacture of drugs using r-DNA Technology and monoclonal antibodies

Unit V

Trials & Regulations: Clinical Trials & Regulations - Clinical Trials – Design, double blind studies, placebo effects. FDA regulations (General) and Indian Drug regulations- highlight. Good Laboratory Practice, Good manufacturing practice.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books

1. DM Brahmankar, Sunil B Jaiswal, "Biopharmaceutics and Pharmacokinetics-A Treatise", Vallabhprakashan, 2005.

2. Ansel, H., Allen, L., Popovich, N, "Pharmaceutical Dosage Forms and Drug Delivery Systems", Williams & Wilkins, 1999.

Reference Books

- 1. Lippincott, "Remington's Science and Practice of Pharmacy", Williams & Wilkins publishers, 2005.
- 2. Goodman & Gilman's, "The pharmacological basis of therapeutics" by Joel Griffith Hardman, Lee
- E. Limbird, Alfred G.Gilman.2005
- 3. Tripathi KD, "Essential of Medical pharmacology", Jaypee Brothers Medical Publishers2003. * Questions may also be taken from the self study portion

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	Н	S	Н
CO2	Н	S	М	S	S
CO3	S	Н	Н	S	Н
CO4	Н	Н	S	S	Н
CO5	Н	S	Н	Н	S

(12 hrs)

UBC 8

Programme Code: 07	B.Sc Biochemistry						
Major elective- DAIRY BIO	Major elective- DAIRY BIOCHEMISTRY						
Batch Hours/Week Total Hours Credit							
2023-2024	4	60	5				

- 1. To understand the basic concepts of dairy technology.
- 2. To provide knowledge about the milk processing techniques.
- 3. To learn the properties of Milk.

Course Outcomes (CO)

K1 to	CO1	Recognize the properties of milk.
	CO2	Recall the methods oftesting density, fat content and acidityof milk.
K5	CO3	Analyze the carbohydrates, lipids, proteins and enzymes present in milk.
	CO4	Understand the non-fermented milk products
	CO5	Acquire knowledge about the various milk products available and milk processing techniques practiced.

UNIT I

Milk- Definition of milk*, physical properties-acidity, viscosity, freezing point and boiling point. Composition of milk, Nutritive value of milk. Vitamins and minerals in milk. Assessment of quality of milk- Density of milk (Lactometer), Determination of fat content (Butyrometer), Acidity of milk (Alcohol test).

UNIT II

Carbohydrates- Types of sugars in milk and their importance. Lipids-Different types of lipids in milk, structure and size of fat globules, physical properties of milk fat.

UNIT III

Proteins- Milk protein chemistry. Different types of proteins-Caseins, Caesinate complex, Whey proteins. Production and forms of whey proteins- α -lactalbumin, β -lactoglobulin and other proteins. Determination of protein fraction in milk- Polyacrylamide gel electrophoresis.

(12 hrs)

(12 hrs)

Total Hours: 60

(12 hrs)

UNIT IV

Enzymes of milk. Effect of heat on protein, fat and sugar - protein mixture of milk. Milk products : Non fermentable products-Whey protein concentrate, Skim milk, Evaporated milk, Sweetened condensed milk, Dry milk, Khoa, Rabri, Ice cream, Standardized milk, Toned milk, Double toned milk, Sterilized milk, Flavored milk, Cream and Colostrum. Fermentable milk products-Butter, Cheese and Curd.

UNIT V

Processing of milk - clarification, pasteurization- HTST & UHTS, role of alkaline phosphatase in pasteurization, effects of pasteurization .Homogenization of milk. Microbial spoilage of milk - steps involved in spoilage of milk. General types of microorganisms of milk and their biological importance. Pathogenic microorganisms in milk (any five). Fermentation of milk.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books

1. B. Srilakshmi(2007), Food Science, 4th ed., Newage international(P) Limited Publishers, New Delhi, India.

Reference books

- 1. Dr. M. Swaminathan (2006), Handbook of Food and Nutrition, 5th ed., Bangalore Printing and Publishing Co. Limited, Bangalore.
- 2. R.C. Dubeyand D.K. Maheshwari(2005), A Text bookof Microbiology, S Chandand Company Ltd, NewDelhi.

* Questions may also be taken from the self-study portion

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	Н	Н	S	S	Н
CO2	S	S	S	S	S
CO3	S	Н	Н	S	Н
CO4	Н	S	S	Н	S
CO5	Н	S	Н	S	Н
S–Strong	H –	High	M– Mediu	m L	-Low

MAPPING

(12 hrs)

Programme Code: 08	B.Sc Biochemistry				
Major elective- BIOSTATISITICS					
Batch	Total Hours	Credits			
2023-2024	4	60	5		

Course Objectives

- To learn the different methods of collecting data and processing 1.
- 2. Toknowaboutthedifferentstatisticalmethodstointerpretthecollectedstatisticaldata
- 3. To know the concept of article writing, report writing and thesis making soon

Course Outcomes (CO)

	CO1	The students get an idea on choosing the appropriate method of collecting data
K1	CO2	The students learn how to select the statistical method and process the collected data
to	CO3	The students can device and standardize the statistical methods
K5	CO4	The students can understand the classification and tabulation data problems
	CO5	The students will be wellversed in preparing a report, publishing an article and writing a project dissertation.

Unit I

Research: Definition, Introduction, objectives, motivation, types, approaches, significance. Research Methods versus Methodology. Research process: formulating the research problem, extensive literature survey, developing the hypothesis, preparing the research design, determining sample design, collecting the data, execution of the project, analysis of data, hypothesis testing, generalizations and interpretation, and preparation of the report or presentation of the results.

Unit II

Research design: Introduction, necessity, features, concepts relating to research design, types of research design, basic principles of experimental design (Principle of Replication, Principle of Randomization and Principle of Local Control).

Unit III

Methods of Data Collection: Collection of Primary Data: Observation Method, Interview Method, questionnaire method (merits, demerits and main aspects), schedules, difference between questionnaire and schedules. Collection of Secondary Data: characteristics, Selection of appropriate method, Case Study method.

Total Hours: 60 (12 hrs)

(12 hrs)

(12 hrs)

Classification and tabulation of data*. Diagrammatic & graphic presentation of data. Problems involving arithmetic mean, median, mode, quartiles, deciles and percentiles. Unit V

Interpretation and Report Writing: Introduction, Techniques and precautions in interpretation, Report writing – significance, different steps, layout, types (technical and popular), mechanics (with examples) and precautions. Publication in a scientific journal.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books

- 1. C.R.Kothari. Research Methodology: Methods and Techniques (2004). New Age International (P) limited. Publishers.
- 2. N.Gurumani (2015). Introduction to Biostatistics. MJP Publishers.
- 3. S.P.Gupta. (2009). Statistical Methods, 28thedition, Sultan Chand & Sons

Reference Books

- 1. Sundar Rao, Jesudian Richard. (2009). An Introduction to Bio-Statistics. 4th edition, Prentice-Hall of IndiaPvt.Ltd.
- 2. Naren Kr. Dutta (2002). Fundamentals of Biostatistics: Practical Approach. Kanishka Publisher.
- 3. S.P.Gupta.(2016).FundamentalsofStatistics.6thedition,SultanChand.

* Questions may also be taken from the self-study portion

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	Н	S	S	М	Н
CO2	М	Н	Н	S	М
CO3	S	М	S	Н	Н
CO4	S	Н	S	М	Н
CO5	S	Н	S	Н	S

S–Strong

Unit IV

UBC	87

Programme Code: 09	B.Sc Biochemistry					
Major elective- NUTRITION	Major elective- NUTRITIONAL BIOCHEMISTRY					
Batch	Hours / Week	Total Hours	Credits			
2023-2024	4	60	5			

- 1. To impart the knowledge on historical overview of nutrition, essential nutrients for metabolism
- 2. To provide an overview of the major macro and micro nutrients relevant to human health
- 3. To discuss the scientific rationale for defining nutritional requirements in healthy individuals and populations, with reference to specific conditions such as pregnancy, lactation, and older age

Course	Outcomes	(CO)
--------	----------	------

	CO1	Lean about the significance and role of nutrition in maintaining the health
K1 to K5	CO2	Describe the biochemical and physiological functions of the nutrients and their integrated role.
	CO3	Explore the nutritive value of carbohydrates, proteins and amino acids and their importance
	CO4	Learning about malnutrition and balanced diets
	CO5	Evaluate the therapeutic role of key nutrients in maintaining health.

Total Hours: 60

Unit I

Introduction: Nutrition – concepts - role of nutrition in maintaining health, basic food groups - energy yielding, body building and protective foods. Basic concepts of energy expenditure, unit of energy – Kcal - energy requirements of different categories of people - RQ of foods - Body Mass Index (BMI) - Basal Metabolic Rate (BMR) – determination and factors influencing BMR.

Unit II

Nutritional significance of dietary components: Physiological role and nutritional significance of carbohydrates, lipids, proteins, vitamins (water soluble and fat soluble) minerals and fiber, Dietary sources, Functions, Digestion, absorption and storage, metabolism of carbohydrates – lipids – proteins.

Unit III

Nutritive value of proteins: Essential amino acids, Biological values of Proteins (animal and plant proteins). Evaluation of proteins by nitrogen balance method-DC, BV, NPU and NAP of animal and plant proteins, single cell proteins, factors influencing protein requirements, Effect of excess protein intake

(12 hrs)

(12 hrs)

(12 hrs)

Protein calorie malnutrition: Protein malnutrition (Kwashiorkor) and under nutrition (marasmus) their preventive and curative measures – composition of balanced diet and RDA forinfants, children, adolescent, adult male and female, pregnant, lactating women and geriatrics

Unit V

(12 hrs)

Nutrition and body defenses: Effect of drugs on food and nutrients, drug - nutrient interaction - nutritional therapy food preparation and management. Role of diet and nutrition in the prevention and treatment of diseases.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books

- 1. Srilakshmi, B. (2013) Nutrition Science Revised Fourth Edition, New Age InternationalPublishers, NewDelhi.
- 2. Paul, S. (2005) A Textbook of Bio-nutrition Curing Diseases through Diet, First Edition, CBSPublishers and Distributors, New Delhi.
- 3. Srilakshmi Swaminathan, M.(2004) Advanced Textbook of Food and Nutrition, Volume II,Second Edition, The Bangalore Printing and Publishing Co. Limited, India.

Reference Books:

- 1. Geissler, C. and Powers, H.(2010)Human Nutrition, Twelfth Edition, Churchill Livingstone, USA.
- 2. Brody, T. (2006) Nutritional Biochemistry, Second Edition, Academic Press, USA.
- 3. Eastwood, M. (2003) Principles of Human Nutrition, Second Edition, Wiley Blackwell ScienceLtd Publishers, USA

* Questions may also be taken from the self-study portion

MAPPING					
PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	Н	S	S	М	Н
CO2	М	Н	Н	S	М
CO3	S	М	S	Н	Н
CO4	S	Н	S	М	Н
CO5	S	Н	S	S	S
S–Strong	H –Hi	gh	M–Medium	L –I	LOW

Unit IV

EXTRA DEPARTMENTAL COURSE (EDC)

23UBC5X1

Programme Code: 07		For all UG programmes			
Course Code: 23UBC5X1		EDC - HUMAN DISEASES AND HEALTH CARE			
Batch	Semester	Hours / Total Credits Week Hours			
2023-2024	\mathbf{V}	Week	3		
		2	30		

Course Objectives

- 1. To learn the importance of nutrients and functions of various organs.
- 2. To provide sufficient knowledge about the pathogenesis of common human diseases
- 3. To address the aspects of diseases, diagnosis and treatment essential to maintain human health

Course Outcomes (CO)

	CO1	Recollect the functions of various biological systems.
K1	CO2	Understand the diseases of circulatory, endocrine and hepatic system.
to K5	CO3	Describe and understand the pathophysiology of diseases.
	CO4	Acquire knowledge about the diseases, diagnosis and treatment essential to maintain human health.
	CO5	Understand the diseases of brain and lungs

Unit – I

Total Hours :30

(6 hrs)

Infectious and Non infectious diseases - Introduction. Food - Constituents, balanced diet, exercise, therapy antibiotics (penicillin, streptomycin) and vaccines. Cancer - causative factors, diagnosis, prevention. Unit – II (6 hrs)

Pancreas - functions and disease (Diabetes Mellitus)- causative factors, diagnosis, prevention, diet and control. Liver- functions and diseases (Cirrhosis and Jaundice)- causative factors, diagnosis, prevention, diet and control.

Unit – III

(6 hrs)

Heart- functions, diseases (Myocardial infarction; Atherosclerosis) -causative factors, diagnosis, prevention, diet and control (6 hrs)

Unit – IV

Kidney - functions and diseases (Nephrotic syndrome, Calculi)- causative factors, diagnosis, prevention, diet and control

23UBC5X1

(6 hrs)

Brain – functions and disease (Alzheimer's Disease) - causative factors, diagnosis, prevention, diet and control – Lungs – functions and Disease (Respiratory disease – Asthma & COVID- 19*.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

Unit – V

1. Marianne Neighbors and Ruth Tannehill-Jones (2009) – Human Diseases Delmar Cengage Learning; 3rd edition.

2. By Margaret Schell Frazier, RN, CMA, BS and Tracie Fuqua, BS, CMA (AAMA) (2020) – Elesiever 7th edition.

3. Richard Fosberry Pauline Lowrie (2005) – Human Helath and Diseases – Advance Biology Readers

Reference Books:

1. Kumar, Abbas and Fausto. (2002). —Pathological basis of Diseases. Elsevier Publishers 7th Edition.

2. Errol C. Friedbnerg. (1986). —Cancer Biology^{II}. W.H. Freeman and Company. G J Tortora (1982) —Principles of Human Physiology^(*), Harper & Row, New York, 2nd Edition

* Questions may also be taken from the self-study portion

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	S	Н	S	Н
CO2	S	Н	S	Н	S
CO3	S	S	S	S	Н
CO4	Н	S	S	S	М
CO5	Н	S	Н	S	Н

MAPPING

S–Strong

GENERAL PAPERS

B.Sc BIOCHEMISTRY					
PART IV – ENVIRONMENTAL STUDIES					
Batch	Batch Semester Hours/Week Total Hours Credits				
2023-2024	2023-2024 I 2 30 2				

- 1. The course will provide students with an understanding and appreciation of the complex interactions of man, health and the environment. It will expose students to the multi-disciplinary nature of environmental health sciences
- 2. To inculcate knowledge and create awareness about ecological and environmental concepts, issues and solutions to environmental problems.
- 3. To shape students into good "Ecocitizens" thereby catering to global environmental needs.
- 4. This course is designed to study about the types of pollutants including gases, chemicals petroleum, noise, light, global warming and radiation as well as pollutant flow and recycling and principles of environmental pollution such as air, water and soil
- **5.** The course will address environmental stress and pollution, their sources in natural and workplace environments, their modes of transport and transformation, their ecological and public health effects, and existing methods for environmental disease prevention and remediation.

Course Outcomes

On successful completion of the course, the students will be able to

	CO 1	Understand how interactions between organisms and their environments drive the dynamics of individuals, populations, communities and ecosystems
K1 To	CO2	Develop an in depth knowledge on the interdisciplinary relationship of cultural, ethical and social aspects of global environmental issues
K5	CO3	Acquiring values and attitudes towards complex environmental socio-economic challenges and providing participatory role in solving current environmental problems and preventing the future ones
	CO4	To gain inherent knowledge on basic concepts of biodiversity in an ecological context and about the current threats of biodiversity
	CO5	To appraise the major concepts and terminology in the field of environmental pollutants, its interconnections and direct damage to the wildlife, in addition to human communities and ecosystems

UNIT I: MULTIDISCIPLINARY NATURE OF ENVIRONMENT

Definition : scope and importance - Need for public awareness - Natural resources - Types of resources - Forest Resources - Water Resources - Mineral Resources - Food Resources - Energy Resources – Land Resources.

UNIT II: ECOSYSTEMS

Concept of an ecosystem – Structure and functions of an ecosystem – Procedures, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food web and ecological pyramids – Structure and function of the following ecosystem – Forest Ecosystem – Grassland Ecosystem – Desert Ecosystem – Aquatic Ecosystem.

UNIT III: BIODIVERSITY AND ITS CONSERVATION

Introduction - Definition - Genetic - Species and ecosystem diversity- Bio geographical classification of India - Value of biodiversity - Biodiversity at global, national and local levels -India as a mega - diversity Nation - Hot spot of biodiversity - Threats to biodiversity - Endangered and endemic species of India - Conservation of Biodiversity - In situ Conservation of Biodiversity -Ex situ Conservation of Biodiversity

UNIT IV: ENVIRONMENTAL POLLUTION

Definition - Causes, effects and control measures of: Air Pollution - Water Pollution - Soil Pollution - Marine Pollution - Noise Pollution - Thermal Pollution - Nuclear Pollution - Solid Waste Management: Causes, effects, control measures of urban and industrial wastes – Role of individual in prevention of pollution – Pollution case studies – domestic waste water, effluent from paper mill and dyeing, cement pollution – Disaster Management – Food, Drought, Earthquake, Tsunami, Cyclone and Landslide.

UNIT V: SOCIAL ISSUES AND THE ENVIRONMENT

Sustainable Development - Smart City, Urban planning, Town Planning, Urban problems related to energy – Water Conservation: Rain Water Harvesting and Watershed Management – Resettlement and rehabilitation of people, its problems and concerns, case studies Narmatha Valley Project -Environmental ethics, issues and possible solutions – Climate change, global warming, ozone layer depletion, acid rain, nuclear accidents and holocaust, case studies - Hiroshima and Nagasaki, Chernobyl - Consumerism and waste products - Environmental Protection Act - Air Pollution Act (Prevention and Control) - Water Pollution Act (Prevention and control) - Wild Life Protection Act - Forest Conservation Act - Issues involved in enforcement of environmental legislation - Public awareness – Human Population and the environment – Population Growth and Distribution – Population Explosion – Family Welfare Programme – Environment and Human Health – Human Rights - Value Education - HIV/ AIDS - Women and Child Welfare - Role of Information Technology in Environment and Human Health.

(6 hrs)

(6 hrs)

(6hrs)

(6 hrs)

(6 hrs)

23EVS101

23EVS101

Teaching Methods

Smart Class rooms /Power Point Presentations / Seminars/Quiz /Discussion /Flipped Classrooms

Text Book

1.P.Arul, A Text Book of Environmental Studies, Environmental Agency, No 27, Nattar street, Velacherry main road, Velacheery, Chennai – 42, First Edition, Nov.2004.

Reference Books:

- 1. Purohit Shammi Agarwal, Atext Book of Environmental Sciences, Publisher Mrs. Saraswati Prohit, Student Education, Behind Naswan Cinema Chopansi Road, Jodhpur.
- 2. Dr.Suresh and K.Dhameja, Environmental Sciences and Engineering, Publisher S.K.Kataria & Sons, 424/6, Guru Nanak Street, Vaisarak, Delhi -110 006.
- 3. J.Glynn Henryand Gary W Heinke, Environmental Science and Engineering, Prentice Hall of India Private Ltd., New Delhi – 110 001

Part IV – I Semester ENVIRONMENTAL STUDIES

23EVS101

<u>Ouestion Paper Pattern</u> (External only)

Duration:3hours

Total Marks: 50

Answer all Questions (5 x 10 = 50 Marks)

Essay type, either or type questions from each unit.

23VED201

B.Sc BIOCHEMISTRY				
PART IV – VALUE EDUCATION MORAL AND				
ETHICS				
Batch	Batch Semester Hours/Week Total Hours Credits			
2023-2024	П	2	30	2

Course Objectives

- 1. To impart Value Education in every walk of life.
- 2. To help the students to reach excellence and reap success.
- 3. To impart the right attitude bypracticing self-introspection.
- 4. To portraythe life and messages of Great Leaders.
- 5. To insist the need for universal brotherhood, patience and tolerance.
- 6. To help the students to keep them fit.
- 7. To educate the importance of Yoga and Meditation.

Course Outcomes (CO)

After completing the course the students:

	CO1	will be able to recognize Moral values, Ethics, contribution of leaders, Yoga and its practice
K1	CO2	will be able to differentiate and relate the day to day applications of Yoga and Ethics in real life situations
to K5	CO3	can emulate the principled life of great warriors and take it forward as a message to self and the society
K)	CO4	will be able to Analyse the Practical outcome of practicing Moral values in real life situation
	CO5	could Evaluate and Rank the outcome of the pragmatic approach to further develop the skills

23VED201

UNIT I:

Moral and Ethics: Introduction – Meaning of Moral and Ethics – Social Ethics – Ethics and Culture - Aim of Education.

UNIT II:

Life and Teachings of Swami Vivekananda: Birth and Childhood days of Swami Vivekananda – At the Parliament of Religions – Teachings of Swami Vivekananda

UNIT III:

Warriors of our Nation: Subhas Chandra Bose – Sardhar Vallabhbhai Patel – Udham Singh – V. O. Chidambaram Pillai - Bhagat Singh - Tiruppur Kumaran - Dheeran Chinnamalai - Thillaiaadi Valliammai – Velu Nachiyar – Vanchinathan

UNIT IV:

(8 hrs) Physical Fitness and Mental Harmony: Simplified Physical Exercise – Hand Exercises – Leg Exercises - Neuro Muscular Breathing Exercises - Eye Exercises - Kabalabathi - Maharasana A & B - Massage - Acupressure - Relaxation - Kayakalpa Yogam - LifeForce - Aim & Objectives -Principle – Methods. Introspection – Analysis of Thoughts – Moralization of Desires – Neutralization of Anger - Eradication of Worries **UNIT V:** (8 hrs)

Yoga and Meditation – The Asset of India: Yogasanam – Rules & Regulations – Surva Namaskar - Asanas -Sitting - Stanging - Prone - Supine - Pranayama - Naadi Sudhi - Ujjayi - Seethali -Sithkari - Benefits. Meditation - Thanduvasudhi - Agna - Shanthi - Thuriyam - Benefits.

Text Books:

1. Value Based Education - Moral and Ethics - Published by Kongunadu Arts and Science College (Autonomous), First Edition (2020).

Reference Books:

- 1. Swami Vivekananda A Biography, Swami Nikhilananda, Advaita Ashrama, India, 24th Reprint Edition (2010).
- 2. Gandhi, Nehru, Tagore and other eminent personalities of Modern India, Kalpana Rajaram, Spectrum Books Pvt. Ltd., revised and enlarged edition(2004).
- 3. Freedom Fighters of India, Lion M.G. Agrawal, Isha Books Publisher, First Edition (2008).
- 4. Easysteps to Yoga by Swami Vivekananda, A Divine Life Society Publication(2000).
- 5. Yoga Practices 1 The World Community Service Centre Vethathiri Publications, Sixth Edition (2017), Erode.
- 6. Yoga Practices 2 The World Community Service Centre Vethathiri Publications Eighth Edition (2017), Erode.

(6 hrs)

(4 hrs)

(4 hrs)

23VED201

Part IV – II Semester Value Education – Moral and Ethics

<u>Ouestion Paper Pattern</u> (External only)

Duration:3hours

Total Marks:50

Answer all Questions (5 x 10 = 50 Marks)

Essay type, either or type questions from each unit.

NON MAJOR ELECTIVE PAPERS

23UHR3N1

B.Sc BIOCHEMISTRY					
	PART IV -NON MAJOR ELECTIVE –I HUMAN RIGHTS				
Batch	Batch Semester Hours / Week Total Hours Credits				
2023-2024	2023-2024 III 2 30 2				

Course Objectives

- 1. To prepare for responsible citizenship with awareness of the relationship between Human Rights, democracy and development.
- 2. To impart education on national and international regime on Human Rights.
- 3. To sensitive students to human suffering and promotion of human life with dignity.
- 4. To develop skills on human rights advocacy
- 5. To appreciate the relationship between rights and duties
- 6. To foster respect for tolerance and compassion for all living creature.

Course Outcomes (CO)

	CO1	Understand the hidden truth of Human Rights by studying various theories.
K1	CO2	acquire overall knowledge regarding Human Rights given by United Nations Organization. (UNO)
to K5	CO3	gain knowledge about various organs responsible for Human Rights such as National Human Rights Commission and state Human Right commission (UNHCR)
	CO4	get habits of how to treat aged person, others and positive social responsibilities
	CO5	treat and confirm, child, refugees and minorities with positive social justice.

UNIT – I

(6 hrs)

Definition, Meaning, Concept ,Theories and Kinds of Human Rights- Evaluation and Protection of Human Rights in India- Development of Human Rights under the United Nations.

UNIT – II

(6 hrs)

United Nations Charter and Human Rights - U.N.Commission on Human Rights- Universal Declaration of Human Rights - International Covenant on

- Civil & Political Rights
- Economic, Social and Cultural Rights

UNIT – III

Human Rights and Fundamental Rights (Constitution) - Enactments regarding Human Rights Laws in India - National Human Rights Commission and State Human Rights Commission.

UNIT – IV

Aged persons and their Human Rights - Human Rights of Persons with Disabilities - Tribal Human Rights in India - Three Generation Human Rights -Social Awareness and Responsibilities of Individuals.

UNIT - V

(6 hrs)Rights of Women, Child, Refugees and Minorities -Social media and Human Rights - NGO's in protection of Human Rights - Right to Election

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Book:

1. Human Rights (2019) Published by Kongunadu Arts and Science College, Coimbatore –29.

Reference Book:

1. Human Rights, (2018) Jaganathan.,

Humanitarian Law and Refugee Lawlaw series. J.P.Arjun Proprietor, Usha Jaganathan 1st floor, Narmatha Nanthi street, Magathma Gandhi Nagar, Madurai - 625014.

23UHR3N1

(6 hrs)

(6 hrs)

				23UWR4N2
	B.Sc BIOCHEMISTRY			
	PART IV -NON MAJOR ELECTIVE –II WOMEN'S RIGHTS			
Batch 2023-2024	Semester IV	Hours / Week 2	Total Hours 30	Credits 2

- 1. To know about the laws enacted to protect Women against violence.
- 2. To impart awareness about the hurdles faced by Women.
- 3. To develop a knowledge about the status of all forms of Women to access to justice.
- 4. To create awareness about Women's rights.
- 5. To know about laws and norms pertaining to protection of Women.
- 6. To understand the articles which enables the Women's rights.
- 7. To understand the Special Women Welfare laws.
- 8. To realize how the violence against Women puts an undue burden on healthcare services.

Course Outcomes (CO)

After Completion of the Course the student will be able to

	CO1	Appraise the importance of Women's Studies and incorporate Women's Studies with other fields.	
K5	CO2	Analyze the realities of Women Empowerment, Portrayal of Women in Media, Development and Communication.	
to F	CO3	Interpret the laws pertaining to violence against Women and legal consequences.	
K1	CO4	Contribute to the study of the important elements in the Indian Constitution, Indian Laws for Protection of Women.	
	CO5	Spell out and implement Government Developmental schemes for women and create awareness on modernization and impact of technologyon Women.	

Unit I Women's Studies:

(6 hrs)

Basic concepts of Women's studies in Higher education, Women's studies perspectives-Socialization- Patriarchy- Women's studies as an academic discipline- Growth and development of Women's studies as a discipline internationally and in India.

23UWR4N2

(6 hrs)

(6 hrs)

(6 hrs)

(6 hrs)

Socio-Economic Development of Women:

Family welfare measures, role of Women in economic development, representation of Women in media, status of Women land rights, Women Entrepreneurs, National policy for the empowerment of women.

Unit III

Unit II

Women's Rights – Access to Justice:

Crime against Women, domestic violence – physical abuse- verbal abuse – emotionalabuse - economic abuse – minorities, dowry- harassment and death, code of conduct for workplace, abetment of suicide.

Unit IV

Women Protective acts:Protective legislation for Women in the Indian constitution- Anti dowry, SITA, PNDT, and Prevention Sexual Harassment at Workplace (Visaka case), Domestic violence (Prevention)Act.

Unit V

Women and Child welfare:

Safety provisions - various forms of mass media, radio, visual, internet, cyber space, texting, SMS and smart phone usage. Healing measures for the affected Women and child society by private and public sector, NGO and society.

Teaching Methods:

Smart Class Room/ Powerpoint Presentation / Seminar / Quiz / Discussion / Flipped Class **Text Book:**

1. Women's Rights (2021), Published byKongunadu Arts & Science

College,Coimbatore -641 029.

Reference Books:

- 1. **"Rights of Indian Women"** by Vipul Srivatsava. Publisher: Corporate Law Advisor, 2014.
- 2. **"Women's security and Indian law"** by Harsharam Singh. Publisher: Aabha Publishers andDistributors, 2015.
- 3. "Women's Property Rights in India" by Kalpaz publications, 2016.

UBC 99

Programme Code :	B.Sc BIOCHEM	B.Sc BIOCHEMISTRY		
Part IV -Non- Major Elective III – Consumer Affairs				
Batch	Hours/Week	Total Hours	Credits	
2023-2024	2	30	2	

Course Objectives

- 1. To familiarize the students with their rights and responsibilities as a consumer.
- 2. To understand the procedure of redress of consumer complaints.
- 3. To know more about decisions on Leading Cases by Consumer Protection Act.
- 4. To get more knowledge about Organizational set-up under the Consumer Protection Act
- 5. To impart awareness about the Role of Industry Regulators in Consumer Protection
- 6. To understand Contemporary Issues in Consumer Affairs

Course Outcomes (CO)

	CO1	Able to know the rights and responsibility of consumers.
	CO2	Understand the importance and benefits of Consumer Protection Act.
K1 to K5	CO3	Applying the role of different agencies in establishing product and service standards.
H	CO4	Analyse to handle the business firms' interface with consumers.
	CO5	Assess Quality and Standardization of consumer affairs

UNIT I

(6 hrs)

Conceptual Framework - Consumer and Markets: Concept of Consumer, Nature of markets: Liberalization and Globalization of markets with special reference to Indian Consumer Markets, E-Commerce with reference to Indian Market, Concept of Price in Retail and Wholesale, Maximum Retail Price (MRP), Fair Price, GST, labeling and packaging along with relevant laws, Legal Metrology. Experiencing and Voicing Dissatisfaction: Consumer buying process, Consumer Satisfaction/dissatisfaction-Grievances-complaint, Consumer Complaining Behaviour: Alternatives available to Dissatisfied Consumers; Complaint Handling Process: ISO 10000suite

UNIT II

The Consumer Protection Law in India - Objectives and Basic Concepts: Consumer rights and UN Guidelines on consumer protection, Consumer goods, defect in goods, spurious goods and services, service, deficiency in service, unfair trade practice, restrictive trade practice.

Organizational set-up under the Consumer Protection Act: Advisory Bodies: Consumer Protection Councils at the Central, State and District Levels; Adjudicatory Bodies: District Forums, State Commissions, National Commission: Their Composition, Powers, and Jurisdiction (Pecuniary and Territorial), Role of Supreme Court under the CPA with important case law.

UNIT III

Grievance Redressal Mechanism under the Indian Consumer Protection Law - Who can file a complaint? Grounds of filing a complaint; Limitation period; Procedure for filing and hearing of a complaint; Disposal of cases, Relief/Remedy available; Temporary Injunction, Enforcement of order, Appeal, frivolous and vexatious complaints; Offences and penalties. Leading Cases decided under Consumer Protection law by Supreme Court/National Commission: Medical Negligence; Banking; Insurance; Housing & Real Estate; Electricity and Telecom Services; Education; Defective Products; Unfair Trade Practices.

UNIT IV

Role of Industry Regulators in Consumer Protection

- i. Banking: RBI and Banking Ombudsman
- ii. Insurance: IRDA and Insurance Ombudsman
- iii. Telecommunication: TRAI
- iv. Food Products: FSSAI
- v. Electricity Supply: Electricity Regulatory Commission
- vi. Real Estate Regulatory Authority

(6 hrs)

(6 hrs)

Contemporary Issues in Consumer Affairs - Consumer Movement in India: Evolution of Consumer Movement in India, Formation of consumer organizations and their role in consumer protection, Misleading Advertisements and sustainable consumption, National Consumer Helpline, Comparative Product testing, Sustainable consumption and energy ratings.

Quality and Standardization: Voluntary and Mandatory standards; Role of BIS, Indian Standards Mark (ISI), Ag-mark, Hallmarking, Licensing and Surveillance; Role of International Standards: ISO an Overview.

Note: Unit 2 and 3 refers to the Consumer Protection Act, 2086. Any change in law would be added appropriately after the new law is notified.

Teaching Methods:

Smart Class rooms / Power Point Presentations / Seminars/Quiz / Discussion / Flipped Classrooms

Reference Books

- 1. Khanna, Sri Ram, Savita Hanspal, Sheetal Kapoor, and H.K. Awasthi. (2007) Consumer Affairs, UniversitiesPress.
- 2. Choudhary, Ram Naresh Prasad (2005). Consumer Protection Law Provisions and Procedure, Deep and Deep Publications PvtLtd.
- 3. G. Ganesan and M. Sumathy. (2012). Globalisation and Consumerism: Issues and Challenges, RegalPublications
- 4. Suresh Misra and Sapna Chadah (2012). Consumer Protection in India: Issues and Concerns, IIPA, NewDelhi
- 5. Rajyalaxmi Rao (2012), Consumer is King, Universal Law Publishing Company
- 6. Girimaji, Pushpa (2002). Consumer Right for Everyone Penguin Books.
- 7. E-books :-www.consumereducation.in
- 8. Empowering Consumers e-book,www.consumeraffairs.nic.in
- 9. ebook,www.bis.org
- 10. The Consumer Protection Act, 2086 and its later versions.

PART IV – SEMESTER III and IV NON – MAJOR ELECTIVES I AND II (2023 - 2024)

QUESTION PAPER PATTERN (External only)

Duration: 3 hours

Max. Marks: 75

Answer <u>ALL</u> Questions

SECTION A (5X5 = 25 marks)

Short answers, either or type, one question from each unit.

<u>SECTION B</u> (5 X 10 = 50 marks)

Essaytype questions, either or type, one question from each unit.

ALLIED PAPERS

23UBC3A3

Programme Code: 07		For B.Sc Zoology		
Course Code: 23UBC3A3		ALLIED BIOCHEMISTRY I		
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	III	5	75	4

Course Objectives

- 1. To make the students to understand the basic principles of biochemistry.
- 2. To learn about the mechanism of action of enzymes in the biological system.
- 3. To learn the Structure and chemistry of different biomolecules

Course Outcomes (CO)

	CO1	Understands the properties, types and functions of carbohydrates, proteins, lipids, enzymes, nucleic acids and their and functions.
K1	CO2	Remembers the structures of monosaccharides, di saccharides and polysaccharides and amino acids
to K5	CO3	Applies the concept of enzymatic activity in biological system.
	CO4	Acquire knowledge about the nuclear organization of prokaryotes in eukaryotes.
	CO5	Describe the Nucleic acid structure and their types, Denaturation and Renaturation of DNA

Total Hours :75

UNIT I

(15 hrs)

Carbohydrates

Carbohydrates: Definition and Classification*. Monosaccharides – Structural aspects-asymmetric carbon atom, D and L isomers, anomers, optical activity and mutarotation. Epimers: pyranose and furanose forms, aldo and keto forms, classification, definition, structure and biological importance.

Hexoses: glucose, fructose, galactose and mannose. Pentoses: Ribose and deoxyribose. Disaccharides: Maltose, sucrose and lactose.

Polysaccharides: Homopolysaccharides: Starch, cellulose, inulin chitin. glycogen, and Heteropolysacchrides: Heparin, hyaluronic acid. chondroitin sulphates. Reactions of monosaccharides- Oxidation of glucose (aldonic acid, aldaric acid and uronicacid).

Action of alcohols and alkalies with sugars, reducing action of sugars in alkaline solution and reaction with phenyl hydrazine.

23UBC3A3

(15 hrs)

(15 hrs)

(15 hrs)

Lipids: Classification and properties of lipids. Types of fattyacids: saturated and unsaturated: essential fatty acids. Classification and significance of phospholipids: Phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol and sphingomyelin.

Classification and significance of glycolipids: Cerebrosides and gangliosides. Classification and functions of lipoproteins. Structure and biological functions of cholesterol.

UNIT III

Amino acids: Classification of amino acids (chemical nature). Essential and non-essential amino acids*. Reactions of amino acids: actions of amino group with benzoic acid, ninhydrin, fluorodinitrobenzene (FDNB), and oxidative deamination.

Reactions of carboxyl group – decarboxylation and amide formation.

Proteins: Definition, classification (chemical nature) and functions of proteins. Structure of proteins-Primary, secondary, tertiary (myoglobin) and quaternary (hemoglobin).

Denaturation and renaturation of proteins. Ampholytes and isoelectric pH.

UNIT IV

Enzymes: Definition, classification and nomenclature of enzymes by IUB, Enzyme units (IU) with examples. Enzyme kinetics- Derivation of Michealis- Menton Equation (single substrate), properties of enzymes, enzyme specificity, mechanism of enzyme action. Theories proposed for the enzyme action- Lock and Key model, induced fit mechanism. Active site and its characteristic features. Factors affecting enzyme activity. Enzyme inhibition and types. Coenzymes-definition with and any five examples. Cofactors- definition with and any five examples.

UNIT V

Nucleic acids: Components, structure of purine bases: Adenine and guanine. Structure of pyrimidine bases: Cytosine, uracil and thymine. Structure of nucleoside and nucleotide. Double helical structure of DNA. Type of bonds of DNA molecule. Denaturation and renaturation of DNA. Structure and types of RNAs: mRNA, tRNA and rRNA.

Teaching Methods

Chalk and board/ Powerpoint presentation/Seminar/Quiz/Discussion/Assignment

Text Books:

- 1. A.C. Deb (2011), Fundamentals of Biochemistry, 9th ed., New Central Book Agency Pvt.Ltd.Kolkata.
- 2. Ambika Shanmugam (2008), Fundamentals of Biochemistry for medical students. 7th ed., LippincottWiliams & Wilkins, Authur, III Cross Street, West C.I.T. Nagar, Chennai 600035.
- 3. Lehninger. L.A(2008), Principles of Biochemistry, W.H. Freeman publishers, India.

UNIT II

(15 hrs)

Reference Books:

- 1. M.N. Chatterjee and Rana Shinda (2005), Text book of Medical Biochemistry, Jaypee brother medical publishers Pvt Ltd. NewDelhi.
- 2. J.L. Jain, Sanjay Jain and Nitin Jain (2007), Elementary Biochemistry, 3rd ed., S Chand and company Ltd, New Delhi.
- 3. David L. Nelson, Micheal M.Cox(2008), Lehninger"s Principles of Biochemistry, Replika press (P) Ltd, India.
- 4. Robert K. Murray, Daryl K. Garnerand Victor W. Rodwell (2008), Harper"s Illustrated biochemistry, 29th ed., Appleton and Lange Stanford, Connecticut, USA.
- 5. Biochemistry, D. Voet and J.G. Voet (2004), 3rd ed.. John Wiley and Sons Inc
- 6. Principles of Biochemistry, D.L. Nelson and M.M. Cox (2008), 5th ed., W.H. Freeman & C

*Question for Examination may also be taken from the self-study portion

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	S	S	S
CO2	Н	S	S	М	S
CO3	S	Н	Н	S	Н
CO4	Н	S	S	Н	М
CO5	S	Н	S	Н	S

MAPPING

S–Strong

 $\mathbf{H} - High$

M– Medium

Programme Code: 07		For B.Sc Zoology		
Course Code: 2	3UBC4A4	Title: ALLIED BIOCHEMISTRY II		
Batch	Semester	Hours / Week	Total Hours	Credits
2023-2024	IV	5	75	4

Course Objectives

- 1. To learn about the various biochemical techniques applicable in both research and clinical laboratories.
- 2. To provide knowledge on metabolic reactions involved in biological reactions.
- 3. To study the Interrelationship between various biomolecules.

Course Outcomes (CO)

	CO1	Remember the concept of pH and buffer system.
K1	CO2	Understand the idea about the working principle of various analytical techniques.
to K5	CO3	Deploy the activity of radioisotopes and their applications in biological system.
	CO4	Interpret the metabolic pathways of various molecules.
	CO5	General pathway of lipid and protein metabolism

Total Hours: 75

(15 hrs)

UNIT I

Buffers and buffer system:

Buffers: Definition. Concept of ionization, pKa, pH and derivation of Henderson-Hasselbalch equation, Acid- base indicators. Components and working of pH meter. Buffer systems of blood and body fluids; Hemoglobin buffer system. Various ways of expressing the concentration of solutions - Normality, Molarity and percentage solutions.*

UNIT II

Colorimetry and Centrifugation.

Colorimetry – Beer and Lambert's law. Instrumentation and working of photoelectric colorimeter (single cell) and visible spectrophotometer. Comparison of colorimeter and spectrophotometer.

Centrifugation- Principle and types. Technique and applications of Ultra centrifuge- Density gradient centrifuge and Differential Centrifugation

23UBC4A4

(15 hrs)

23UBC4A4

(15 hrs)

Chromatography and Electrophoresis Chromatography- Definition, Rf factor, Principle and technique of paper chromatography with reference to separation of amino acids, Affinity chromatography with reference to separation of proteins.

Electrophoresis-Definition, factors affecting mobility of ions in electric field, principle and working of PAGE (polyacrylamide gel electrophoresis) with reference to separation of serumproteins.

UNIT IV

Metabolic pathways: Carbohydrate metabolism: Glycolysis, conversion of pyruvate into acetyl Co A. TCA cycle, Glycogenesis and glycogenolysis. Respiratory chain and oxidative phosphorylation.

Respiratory chain (Electron Transport Chain)- Mitochondrial organization of ETC and structural organization of ETC. Oxidative phosphorylation.

UNIT V

Metabolic pathways, lipid and protein metabolism. Lipid metabolism: Beta-oxidation, biosynthesis of saturated fattyacids- Palmitic acid. Protein metabolism: General pathway of amino acid metabolism – deamination, transamination and decarboxylation. Urea cycle. Interrelationship of carbohydrate, fat and protein metabolism (flow chart only)

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text books

 P. Asokan, (2006), Basics of Analytical Biochemical Techniques, Chinna Publications, TamilNadu.
 A.C. Deb (2011), Fundamentals of Biochemistry, 9th ed., New Central Book Agency Pvt. Ltd. Kolkata.

3. Satyanarayana.U and Chakrapani,U (2013),Biochemistry,4th ed., Books and allied pvt. Ltd, Kolkata.

Reference Books:

1. Keith Wilson and John walker (2011), Principles and Techniques of Biochemistry and Molecular Biology. 7th ed., Cambridge University Press, New York.

2. Robert K. Murray, Daryl K.Garner and Victor W. Rodwell (2008), Harper"s Illustrated Biochemistry, 29th ed., Appleton and Lange Stanford, Connecticut, USA.

3. AmbikaShanmugam,(2008),FundamentalsofBiochemistryforMedicalStudents^{(*,7th}ed.,Lippincott Wiliams & Wilkins, Authur, III Cross Street, West C.I.T. Nagar, Chennai – 600035.

4. Garrette, R.H and Grisham, L.M. (2012), Principles of biochemistry, 5th ed, Saunders College Publishers, USA.

5. Principles and Techniques of Biochemistry and Molecular Biology, K. Wilson and J. Walker (2010) 7th ed., Cambridge University Press.

6. Biochemistry, J.M. Berg, J.L. Tymoczko and L. Stryer (2007), 7th ed., W.H. Freeman & Co

*Question for Examination may also be taken from the self-study portion

UNIT III

(15 hrs)

(15 hrs)

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	S	S	М
CO2	S	S	S	S	S
CO3	S	S	Н	S	Н
CO4	Н	S	S	Н	S
CO5	S	М	S	Н	S

S–Strong

H-High M-Medium L-Low

Programme Code: 07		For B.Sc Zoology		250004
Course Code: 2	3UBC4AL	A.Pr.2. BIOCHEMIST	ſRY	
Batch 2023-2024	Semester III & IV	Hours / Week 2	Total Hours 60	Credits 2

Course Objectives

- 1. To acquire the skill of analyzing carbohydrates and amino acids.
- 2. To provide practical knowledge about the quantitative analysis of carbohydrate and protein.
- 3. To learn the methodology of separation of amino acid by paper chromatography.

Course Outcomes (CO)

	CO1	Recall the classification of biomolecules and learn the preparation of reagents
K3	CO2	Practice the qualitative analysis of different carbohydrates through individual experiments
to K5	CO3	Practice the qualitative analysis of various amino acids through individual experiments
	CO4	Calculate acid and iodine number of lipids, thereby characterizing them
	CO5	Assess the separation technique of amino acids through paper chromatography

Total Hours: 60

List of Programs

1. QUALITATIVE ANALYSIS

1. Analysis of carbohydrates:

- a. Monosaccharides- Pentose- Arabinose. Hexoses- Glucose and fructose
- b. Disaccharides- Sucrose, maltose and lactose
- c. Polysaccharide-Starch.

2. Analysis of Amino acids:

a. Histidine b. Tyrosine. c. Tryptophan d. Arginine e. Cysteine

II. QUANTITATIVE ANALYSIS OF BIOMOLECULES [Group experiments]

- Estimation of glucose by anthrone method.
- Estimation of proteins by Lowry's method.

23UBC4AL

III. SEPARATION TECHNIQUE [Demonstration]

Separation of amino acids by paper chromatography

Reference Books:

- 1. Sadhasivsam. S and Manickam. A. (2008), Biochemical Methods, revised 2nd ed., New age International Publishers, India.
- 2. Jeyaraman. J. (2007), Laboratory Manual in Biochemistry, New Age International Publishers, New Delhi.
- 3. David T Plummer. (2017), An Introduction to Practical Biochemistry, 3rd ed, Tata McGraw Hill publishing Co Ltd, New Delhi.

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	S	S	S
CO2	S	S	S	Н	S
CO3	S	S	Н	S	Н
CO4	Н	S	S	Н	М
CO5	Н	S	Н	Н	S

MAPPING

S–Strong

H – High

M– Medium

Allied Practical 2 - Biochemistry

23UBC4AL

QUESTION PAPER PATTERN FOR PRACTICAL EXAMINATION

Time : 3 hours

Total: 30 marks

I. Qualitatively analyze the given unknown sugar sample and give the systematic procedure (8+5).
II. Analyse systematically the given unknown amino acid solution and write the procedure (7+5).
III Record – 5 marks

Allied Practical 2 Biochemistry

For qualitative analysis, the following samples shall be given.

II. Carbohydrate

Pentose, glucose, fructose, sucrose, lactose and starch.

III. Amino acids

Histidine, Tyrosine, Tryptophan, Arginine and cysteine.

23UBC4AL

Qualitative Analysis

No	Details	Marks
	ESE	
	Analysis I	
1	Procedure	5
2	Test and Results	8
	Analysis II	
1	Procedure	5
2	Test and Results	7
	Record	5
	Total (ESE)	30
	CIA	
1	Attendance	5
2	Observation notebook & Regularity	5
3	CIA model Practical Test	10
		(30 marks will be converted to 10)
	Total	20
	Grand Total	50

CERTIFICATE PROGRAMMES

1. MUSHROOM TECHNOLOGY

2. INDIGENOUS FOODS AND NUTRACEUTICALS

CERTIFICATE PROGRAMME

1. MUSHROOM TECHNOLOGY

Subject code/ Question paper code	Title of the Paper	Lecture Exam marks hours/		Duration of exam	Credits		
paper coue		week	CIA	ESE	Total		
23CBCA101	Mushroom Science	2	50	50	100	3	2
23CBCA102	Mushroom Cultivation	2	50	50	100	3	2
23CBCA1CL	Practical	2	50	50	100	3	2
Total		90			300		6

CIA- Continuous Internal Assessment;

ESE- End of Semester Examinations

UBC 1	115
-------	-----

23CBCA101

Programme Code:07	B.Sc Biochemistry				
Course Code: 23CBCA101	MUSHROOM SCIENCE				
Batch 2023-2024	Hours / Week 2	Total Hours 30	Credits 2		

Course Objectives:

- 1. To learn the basics of mushroom biology
- 2. To learn the nutritional and medicinal properties of mushrooms
- 3. To learn the morphology and life cycle of mushrooms

Course Outcomes (CO)

On successful completion of the course, the students will be able to

	CO1	To learn the mushrooms and its properties
K1	CO2	To study the growth factors and cultivation technologies
to K5	CO3	To acquire the knowledge about Composting
	CO4	To learn the Knowledge of mushroom culture technology
	CO5	To explore the mushroom spawn production process

Total Hours:60

(6 **hrs**)

UNIT – I

Mushrooms:

Introduction, biodiversity, edible and non-edible species, variations in morphology. Nutrient Profile - Protein, amino acids, calorific values, carbohydrates, fats, vitamins & minerals. Health benefits of mushroom.

UNIT – II Growth Factors:

Environmental factors (Hydrogen Ion Concentration (pH), Temperature, Aeration, Light, and Gravity), Nutritional Factors (Concentration of Nutrients, Nature of Carbohydrate, Nitrogen, Mineral Nutrition, Vitamins) and Chemical Factors. Overview of Cultivation Technologies

(6 hrs)

UNIT – III

Compost & Composting:

Principles of composting, machinery required for compost making, materials for compost preparation. Methods of Composting- Long method of composting (LMC) & Short method of composting (SMC).

Mushroom Tissue Culture Technology: Commonly used growth media, preparation of media, methods of isolation of mushroom tissue, inoculation, mycelial growth, storage and preservation of cultures. Revival of cultures, sub culturing methods. Factors affecting the growth of mycelial cultures. Equipment's for mushroom tissue culture process.

$\mathbf{UNIT} - \mathbf{V}$

UNIT – IV

Mushroom Spawn Production Technology:

Definition – Spawn, types of substrates used for spawning. Facilities required for spawn preparation, Preparation of spawn substrate, preparation of pure culture, media used in raising pure culture, culture maintenance, and storage of spawn. **Teaching Methods**

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Book:

1. Better life with mushrooms (2014), S. Krishnakumari and S. Kathiravan, Kongunadu Arts and Science College, Coimbatore – 641029, Tamil Nadu, India.

Reference Books::

- 1. MushroomCultivation, Tripathi, D.P. (2005) Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi.
- 2. PathakYadavGour (2010). Mushroom Production and Processing Technology, Published by Agrobios(India).
- 3. Nita Bahl, 2002. Hand Book on Mushroom 4th edition. Vijay Primlani for oxford and IBH Publishing Co. Pvt. Ltd., NewDelhi.
- Training Manual on Culture Techniques & Spawn Production (2017), S. Krishnakumari, S. Kathiravan, M. Karthik, V. Suganthi, and B. Krishna, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India.
- 5. Shu-Ting Chang and Philip G. Miles (2004) Mushrooms -Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact.2nd edition. CRC PressLLC.
- 6. Philip G. Miles and Shu-Ting Chang. Mushroom Biology Concise Basics and Current Developments (1997). World Scientific Publishing Co. Pte.Ltd.

23CBCA101

(6 hrs)

(6 hrs)

(6 hrs)

23CBCA101

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	Н	S	S
CO2	S	S	S	Н	S
CO3	S	S	М	S	Н
CO4	Н	S	S	Н	М
CO5	Н	S	Н	S	S

 $S- Strong \qquad H- High \qquad M- Medium \qquad L-Low$

23	CR	CA	102	
40	$\mathbf{U}\mathbf{D}$	UЛ	104	

Programme Code:07	B.Sc Biochemistry				
Course Code: 23CBCA102	MUSHROOM CULTIVATION				
Batch	Hours / Week	Total Hours	Credits		
2023-2024	2	30	2		

Course Objectives:

- 1. To learn the various aspects of mushroom tissue culture technology.
- 2. To know about the processes involved in mushroom spawn production.
- 3. To learn the technology of oyster and milky mushroom cultivation.
- 4. To create an awareness on management of post mushroom substrate.
- 5. To get involved in value added product production from mushrooms.

Course Outcomes: (CO)

On successful completion of the course, the students will be able to

	CO1	Learn the process of oyster mushrooms cultivation
K1	CO2	Learn the process of milk mushroom cultivation
to K5	CO3	Studythe biotic and abiotic factors responsible for disorders
	CO4	Learn to manage post mushroom cultivation
	CO5	Affairs business and entrepreneurial skill in mushroom

UNIT –I

(6 hrs)

Technology of Oyster Mushroom Cultivation: Infrastructural facilities required for cultivation, Process of cultivation: Sterilization, selection of substrate, processing, packing of substrate, spawn inoculation, spawn running, maintenance of temperature and humidity, harvest of mushrooms and packing of mushrooms.

23CBCA102

(6 hrs)

(6 hrs)

(6 hrs)

Strategies for successful Mushroom Business

Economics of Spawn and mushroom cultivation. Storage and shelf life of mushroom after harvest -Mushroom recipes. Mushroom in industrial perspectives. - Production of various mushroom based value based products.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Book:

1. Better life with mushrooms (2014), S. Krishnakumari and S. Kathiravan, Kongunadu Arts and Science College, Coimbatore – 641029, Tamil Nadu, India.

Reference Books:

- 1. MushroomCultivation, Tripathi, D.P. (2005) Oxford & IBH Publishing Co. Pvt. Ltd, NewDelhi.
- 2. PathakYadavGour (2010). Mushroom Production and Processing Technology, Published by Agrobios(India).
- 3. Nita Bahl, 2002. Hand Book on Mushroom 4th edition. Vijay Primlani for oxford and IBH Publishing Co. Pvt. Ltd., NewDelhi.
- 4. Training Manual on Culture Techniques & Spawn Production (2017), S. Krishnakumari, S. Kathiravan, M. Karthik, V. Suganthi, and B. Krishna, Kongunadu Arts and Science College, Coimbatore - 641029, Tamil Nadu, India.
- 5. Elaine Marshall and N. G. (Tan) Nair. (2009) make money by growing mushrooms. Rural Infrastructure and Agro-Industries Division, Food and Agriculture Organization of the United Nations. Rome.
- 6. Shu-Ting Chang and Philip G. Miles (2004) Mushrooms -Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact.2nd edition. CRC PressLLC.
- 7. Philip G. Miles and Shu-Ting Chang. Mushroom Biology Concise Basics and Current Developments (1997). World Scientific Publishing Co. Pte.Ltd.
- 8. Marian Petre (2016). Mushroom Biotechnology. Developments and Applications. 1st edition. Academic Press.USA.

UBC 119

UNIT – II

Technology of Milky Mushroom Cultivation:

temperature and humidity, harvest of mushrooms and packing of mushrooms. **UNIT –III**

Mushroom Disease Management:

Biotic factors responsible for disorders: Nematodes, Parasitic fungi, Antagonistic fungi, Pathogenic bacteria, virus, Viroids, mycoplasmas, and rickettsias. Abiotic factors responsible for disorders. **UNIT-IV** (6 hrs)

Infrastructural facilities required for cultivation, Process of cultivation: Sterilization, selection of substrate, processing, packing of substrate, spawn inoculation, spawn running, maintenance of

Management of Post Mushroom Substrate (PMS):

Use of Post Mushroom Substrate in soilreclamation, organic fertilizer, source for biogas production, animal feed, casing material for mushroomcultivation, vermi compost production and other uses. Societal and Environmental impact of PMS management.

UNIT-V

23CBCA102

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	Η	S	S
CO2	S	S	S	Н	S
CO3	S	S	М	S	Н
CO4	Н	S	S	Н	М
CO5	Н	S	Н	S	S

S–Strong

 $\mathbf{H} - High$

M– Medium

		23CH	BCA1CL		
Programme Code:07	B.Sc Biochemistry				
Course Code: 23CBCA1CL	PRACTICAL - MUSHROOM CULTIVATION				
Batch	Hours / Week	Total Hours	Credits		
2023-2024	2	30	2		

Course Objectives:

- 1. To provide a hands-on training on the technologies of mushroom tissue culture, spawn production and cultivation.
- 2. To equip the students with the different techniques and instrumentation.

Course Outcomes (CO)

On successful completion of the course, the students will be able to

	CO1	To understand the mushroom tissue culture
	CO2	To study the different techniques and instruments
K1 to K5	CO3	To learn the Spawn production technology
	CO4	Acquire skills in mushroom cultivation technology
	CO5	Analyze the primary and secondary metabolites in mushroom

I. Tissue culture, spawn and mushroom production techniques

- 1. Sterilization of tissue culture and spawn production utensils.*
- 2. Media preparation for mushroom tissue culture.*
- 3. Inoculation of the tissue/culture into the culture media.
- 4. Sub culturing of mycelia from slant/petri plate.
- 5. Mushroom spawn preparation*
- 6. Preparation of F1 and F2 generation from mother spawn*
- 7. Substrate processing for mushroom production.*
- 8. Making of mushroom beds.*

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Book:

1.S.Sadasivam and A.Manikam (2005). Biochemical Methods. 2ndedition. New Age International (P) Limited Publishers. New Delhi.

References Books:

- 1. Mushroom Cultivation, Tripathi, D.P. (2005) Oxford & IBH Publishing Co. Pvt.Ltd, NewDelhi.
- 2. PathakYadavGour (2010). Mushroom Production and Processing Technology, Published by Agrobios(India).
- 3. Training Manual on Culture Techniques & Spawn Production (2017), S. Krishnakumari, S. Kathiravan, M. Karthik, V. Suganthi, and B. Krishna, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India.

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Η	Н	S	S
CO2	S	S	S	Н	S
CO3	S	S	М	S	Н
CO4	Н	S	S	Н	М
CO5	Н	S	Н	S	S

MAPPING

S–Strong

M– Medium

CERTIFICATE PROGRAMME 2. INDIGENOUS FOODS AND NUTRACEUTICALS

Subject code/ Question paper code	Title of the Paper	Lecture hours	Exam marks		Duration of exam	Credits	
	i apci		CIA	ESE	Total		
23CBCB101	Nutraceuticals	2 hrs	50	50	100	3	2
23CBCB102	Indigenous Food	2hrs	50	50	100	3	2
23CBCB1CL	Practical	2 hrs	50	50	100	3	2
Total		90			300		6

CIA- Continuous Internal Assessment;

ESE- End of Semester Examinations

23CBCB101

Programme Code:07	B.Sc Biochemistry				
Course Code: 23CBCB101	NUTRACEUTICALS				
Batch	Hours / Week Total Hours Credits				
2023-2024	2 30 2				

Course Objectives

- 1. To learn the basics of nutraceutical Sciences
- 2. To learn the Nutrition related diseases and disorders
- 3. Impart knowledge of specialty nutraceuticals their technologyrequirements.

Course Outcomes (CO)

On successful completion of the course, the students will be able to

	CO1	Describe the basics of nutraceutical Sciences		
	CO2	To study the different types of Nutrition related disorders		
K1 to	CO3	To learn the nutraceuticals technology and their requirements		
K5	CO4	To learn the nutrition related diseases and disorders		
	CO5	Acquire the knowledge about prebiotics and probiotics nutraceuticals		

UNIT I

(6 hrs)

(6 hrs)

Nutrients

Basics of energy balance - Basal Metabolic Rate (BMR), Body Mass Index (BMI) and Standard Dynamic Action (SDA) with special reference to nutraceutical industry. Energy Carbohydrates, lipids and proteins Fat soluble vitamins-A, D, E and K Water soluble vitamins – thiamine, riboflavin, niacin, pyridoxine, folate, vitamin B12 and vitamin C Minerals – calcium, iron, iodine, fluorine, copper and zinc.

UNIT II

Nutritional significance of dietary components

Physiological role and nutritional significance of carbohydrates, lipids, proteins, vitamins (water soluble and fat soluble) minerals and fibre. Dietary sources. Functions. Digestion, absorption and storage, metabolism of carbohydrates – lipids – proteins.

Phytonutraceuticals

UNIT III

UNIT IV

Introduction to free radicals, Reactive oxygen species, Free radicals involvement in other disorders. Antioxidants - use of antioxidants as dietary supplements in prevention and treatment of cancer, obesity and stress. Plant secondary metabolites- Alkaloids, phenols, Flavonoids Terpenoids and their role in maintaining good health. Algae as source of omega - 3 fatty acids.

Carbohydrates, Protein, amino acids, Fat, vitamins and minerals - excess and deficiency, symptoms, prevention and management. Role of nutraceuticals with special reference to the prevention and treatment of diabetes mellitus, hypertension, hypercholesterolemia and cancer. Brief idea about some Nutraceutical rich supplements e.g. Bee pollen, Caffeine, Green tea, Lecithin, Mushroom extract, Chlorophyll, Kelp and Spirulina etc.

UNIT V

Microbial nutraceuticals

Nutrition related diseases and disorders

Concept of prebiotics and probiotics - principle, mechanism, production and technology involved, applications - examples of bacteria used as probiotics, use of prebiotics in maintaining the useful microflora - extraction from plant sources. Bio fortification and nutritional enhancement. **Teaching Methods**

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Book:

1. Swami Nathan, M.(2004) Advanced Textbook of Food and Nutrition, Volume II, SecondEdition, the Bangalore Printing and Publishing Co. Limited, India.

References Books

- 1. Srilakshmi, B. (2013) Nutrition Science Revised Fourth Edition, New Age InternationalPublishers, New Delhi.
- 2. Israel Goldberg (Ed.) (1999) Functional foods, designer foods, pharma foods, Nutraceuticals, Aspen publishers Inc., USA
- 3. L. Rapport and B. Lockwood (2002) Nutraceuticals, 2nd Edition, Pharmaceutical Press, London.
- 4. M. Maffei (Ed.) (2003) Dietary Supplements of Plant Origin, Taylor & Francis, London.
- 5. Shahidi and Weerasinghe (Ed.) (2004) Nutraceutical beverages Chemistry, Nutrition and health Effects, American Chemical Society, Washington.5. Richard Neeser & J. Bruce German (2004) Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals, Jean, Marcel Dekker, Inc
- 6. Frei, B. (1994) Naturalantioxidants in human health & disease. Academic Press, USA.
- 7. San Diego, Tannock, G.W. (1999) Probiotics: A critical review, Horizon Scientic Press, UK.
- 8. H. Panda, Herbal beauty products with formulation & processes, Asia Pacific Business PressInc.

(6 hrs)

(6 hrs)

23CBCB101

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	Н	S	S
CO2	S	S	S	Н	S
CO3	S	S	М	S	Н
CO4	Н	S	S	Н	М
CO5	Н	S	Н	S	S

S–Strong

 \mathbf{H} – High

M– Medium

Programme Code:07	B.Sc Biochemistry		
Course Code: 23CBCB102	INDIGENOUS FOODS		
Batch	Hours / Week	Total Hours	Credits
2023-2024	2	30	2

Course Objectives

- 1. To learn the food processing and product development
- 2. Training in the formulation, processing, manufacture and packaging requirements of food products
- 3. To learn Food laws and Regulations

Course Outcomes (CO)

On successful completion of the course, the students will be able to

	CO1	Describe the basics of Food processing and product development				
	CO2	To Understand the formulation and packaging of food products				
K1 to K5	CO3	Using statistical analytical techniques and their applications				
	CO4	Using the software tools qualitycontrol equipment's and applications				
	CO5	To studyabout the Food laws and regulations				

UNIT I

(6 hrs)

(6 hrs)

Introduction to food processing industry

Introduction and scope of food processing industry – Indian scenario; Opportunities and domains of food processing sectors; Skills required in the different sectors: Dairy, Vegetable, Fruits, Beverages, Spices processing sectors; Government policies: FICSI.

UNIT II

Product development

Activity screening, formulations of products from minor millets, energy drinks, bars, sports drinks, fortified products, geriatric products, veterinaryproducts, immune boosters, and bioavailability.

Packaging Principles of packaging; Types of packaging; Special packaging: Vacuum, gas and shrinkage packaging; Function of packaging; Packaging materials: structural qualities, performance, moisture and gas transmission; Interaction between food and packaging material; Shelf life testing.

23CBCB102

23CBCB102

(6 hrs)

(6 hrs)

(6 hrs)

Quality Assurance

UNIT III

Quality checks - quality assurance samples, master sample, internal controls, statistical analysis of test data, techniques and concepts of statistical quality control and statistical process control, non-conformities. Operational aspects – calibration, accuracy checks of quality control equipment's and applications of software used in quality analysis.

UNIT IV

Reporting and documentation

Quality analysis Reporting of different products, Documentation – methods and procedures of writing and maintaining lab, research records, research performance reports, schemes and guidelines, power point presentations, tables, charts, word documents, development of research objectives and proposal writing for funding and contractual purposes, publications and technical writing, Regulatorycompliance of the final documents.

UNIT V

Food Laws and Regulations

FDA, FPO, MPO, AGMARK. HACCP and GMPs on Food Safety. Adulteration of foods. Regulations and Claims – Current Products: Label Claims, Nutrient Content Claims, Health Claims, Dietary Supplements Claims. FSSAI Roles and responsibilities.Marketing and regulatory issues for functional foods and nutraceuticals recent developments and advances in the area of nutraceuticals and functional foods.

Teaching Methods

Chalk and board/Power point presentation/Seminar/Quiz/Discussion/Assignment

Text Books

1. Anjaneyulu, Y. and Marayya, R. (2005). Quality assurance and quality management in pharmaceutical industry. Hyderabad, A.P.: Pharma Book Syndicate.

Reference Books

- 1. Jameel, F., Hershenson, S., Khan, M. and Martin-Moe, S. (n.d.). Quality by design for biopharmaceutical drug product development.
- 2. Reklaitis, G., García-Munoz, S. and Seymour, C. (n.d.). Comprehensive quality by design for pharmaceutical product development and manufacture.
- 3. Abraham, J. and Lawton Smith, H. (2003). Regulation of the pharmaceutical industry. Hound mills, Basingstoke, Hampshire: Palgrave Macmillan.
- 4. Haider, S. (2002). Validation standard operating procedures. Boca Raton [Fla.]: St. Lucie Press, London New York.

23CBCB102

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	Н	S	S
CO2	S	S	S	Н	S
CO3	S	S	М	S	Н
CO4	Н	S	S	Н	М
CO5	Н	S	Н	S	S

S–Strong

H – High M– Medium

23CBCB1CL

Programme Code:	B.Sc. Biochemistry				
Course Code: 23CBCB1CL	PRACTICAL- INDIGENOUS FOODS AND NUTRACEUTICALS				
Batch	Hours/Week	Total Hours	Credits		
2023-2024	2	30	2		

Course Outcomes (CO)

On successful completion of the course, the students will be able to

	CO1	Understand the food processing and product development
K1	CO2	Impact the knowledge of formulation and packaging of food products
to K5	CO3	Study about the Food laws and regulations
	CO4	Skills in Preparation of labeling food products
	CO5	Study the evaluation probiotic/prebiotic foods

LIST OF PRACTICALS:

- 1. Identification of food sources for various nutrients using food composition tables.
- 2. Principle and practice of various extraction procedures used in herbal industry.Phytochemical profiling of plant sample and extract.
- 3. Record diet of self using 24 hour dietaryrecall and its nutritional analysis.
- 4. Nutritional labelling of food products.
- 5. Estimation of BMI and other nutritional status parameters.
- 6. Formulation of a health drink.
- 7. Industryvisit to a food processing and nutraceutical unit.
- 8. Preparation of certificate of analysis of processed food.
- 9. Preparation and evaluation of various food samples- cookies/ biscuits/ snack foods
- 10. Preparation and evaluation of probiotic/prebiotic foods.

23CBCB1CL

MAPPING

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	Н	S	М	Н	S
CO2	S	S	S	Н	S
CO3	S	S	Н	S	Н
CO4	Н	S	S	S	М
CO5	Н	S	Н	Н	S

S-Strong H - High M - Medium