KONGUNADU ARTS AND SCIENCE COLLEGE

(AUTONOMOUS)

COIMBATORE – 641 029

DEPARTMENT OF BIOTECHNOLOGY (Unaided)
COURSE OUTCOMES (CO)

OF

PG DIPLOMA IN BIOINFORMATICS

For the students admitted In the Academic Year 2021-2022

COURSE OFFERD

BY

PG AND RESEARCH DEPARTMENT OF BIOTECHNOLOGY

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

COIMBATORE – 641 029

Programme Code:08	Program name: PG Diploma in Bioinformatics			
Subject Code:21PDBI101	Core Paper 1 - ESSENTIALS OF BIOINFORMATICS			
Batch : 2021-2022	Semester I	Hours / Week 2	Total Hours 15	Credits 3

- To provide a basic understanding on theory and Applications of bioinformatics.
- To decipher the features and use of different databases for DNA, RNA and Proteins.
- To employ alignment tools to understand the complexity of biomolecules.

COURSE OUTCOMES

CO1	Capable to identify the existing biological problem and to apply the relevant
	omics
	Concept
CO2	Able to explore the biological data to solve several issues in healthcare Domains
CO3	Accomplish the different level of protein structure and the respective database
CO4	Potential to recognize the similar function and structure for sequences
CO5	Perform MSA to infer conserved regions and domains of biological molecules
	CO2 CO3

Programme Code:08	Program name: PG Diploma in Bioinformatics			
Subject Code: 21PDBI102	Core Paper 2 - PROGRAMMING IN C			
Batch:	Semester	Hours / Week	Total Hours	Credits
2021-2022	I	2	15	3

- To familiarize students with the programming language
- To gain knowledge of C programming language
- To enable the application of C program in real time programs

COURSE OUTCOMES

K1	CO1	Able to write syntax and code using C program
↑	CO2	Relate the importance of programming in biology
	CO3	Apply in developing tools for computational analysis of biological molecules
K5	CO4	Illustrate the process of data file manipulations using C
	CO5	Design programs using variety of data structures

Programme Code:08	Program name: PG Diploma in Bioinformatics			
Subject Code: 21PDBI1CL		Core Pra	ctical I	
Batch:	Semester	Hours / Week	Total Hours	Credits
2021-2022	I	2	10	1

- To understand the basic feature of different biological databases
- To retrieve information of scientific interest from the specific database
- To utilize the tools existing for nucleic acid and protein analysis

COURSE OUTCOMES

	CO1	Relate the biological sequence databases for computational analysis
K3 ↑	CO2	Annotate the biological sequences to attain scientifically significant information
	CO3	Implement the sequence similarity tools to acquire significant information
K5	CO4	Apply the knowledge of computational tools to address the clinical problems
	CO5	Analyze the data of gene and protein for evolutionary studies

Programme Code:08	Program name: PG Diploma in Bioinformatics			
Subject Code: 21PDBI1CM		Core Pra	actical II	
Batch:	Semester	Hours / Week	Total Hours	Credits
2021-2022	I	2	10	1

- To familiarize with coding and syntax for writing a program
- To understand and rectify the errors
- To relate computational programming knowledge and biological problems

COURSE OUTCOMES

K3	CO1	Identify the appropriate data structure for solving real world problems
†	CO2	Implement various kinds of searching and sorting techniques
↓	CO3	Debug the coding/syntax errors
	CO4	Apply the concepts of object-oriented programming
K5	CO5	Illustrate the process of functions and classes using C++

Programme Code:08	Program name: PG Diploma in Bioinformatics			
Subject Code: 21PDBI203	Core Paper 3 – CHEMINFORMATICS, MOLECULAR MODELINGAND DRUG DESIGNING			
Batch : 2021-2022	Semester II	Hours / Week 2	Total Hours 15	Credits 2

- To introduce the basic concepts of drug designing and modeling
- To Provide impacts on various resources available for biological molecules
- To Understand the interactions between molecules using various Computational tools

COURSE OUTCOMES

K1	CO1	Classify small molecules and interpret results from chemoinformatics analysis
 	CO2	Interpret the significance of computationally modeled biomolecules
	CO3	Depict the importance of natural small molecules in pharmaceutical applications
•	CO4	Apply the concepts for modern drug discovery process
	CO5	Demonstrate the key features to notice in target-ligand interactions
K5		

Programme Code:08	Program name: PG Diploma in Bioinformatics			
Subject Code: 20PDBI204	Core Paper 4–Python Programming			
Batch :2021-2022	Semester II	Hours / Week 2	Total Hours 15	Credits 2

- To acquire programming skills in core Python and to learn and understand Python programming basics and paradigm
- To Learn core Python scripting elements such as variables and flow control structures
- To learn and understand python looping, control statements and string manipulations.
- To learn how to use exception handling in Python applications for error handling.
- To Use functions and represent Compound data using Lists, Tuples and Dictionaries
- To Read and write data from & to files in Python and develop python Application
- Master the fundamentals of writing Python scripts

COURSE OUTCOMES

K1	CO1	Relate the necessity for programming in python
	CO2	Define and demonstrate the use of built-in data structures "lists" and "dictionary".
	CO3	Discover how to work with lists and sequence data
▼ K5	CO4	Design and implement a program to solve a real world problem
	CO5	Design and implement GUI application and how to handle exceptions and files

Programme Code:08	Program name: PG Diploma in Bioinformatics			
Subject Code: 21PDBI2CN	Core Practical III			
Batch : 2021-2022	Semester II	Hours/Week 2	Total Hours 10	Credits 1

- To explain basic concepts of chemoinformatics
- To understand the most appropriate method (or methods) to use for a particular problem
- To develop or strengthen skills in working with computational chemistry and bioinformaticsapplications and databases.

K1	CO1	Analyze and validate the structure stability of computationally processed protein
		model
	CO2	Handle the different file formats of biomolecules
•	CO3	Investigate the importance of therapeutic target specificity for particular diseases
K5	CO4	Design the biological targets and properties of the small molecule under investigation
	CO5	Interpret the lead compound- target interactions