KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

Re-accredited by NAAC with 'A+' Grade (4th Cycle)

College of Excellence (UGC)

Coimbatore – 641 029

DEPARTMENT OF MATHEMATICS

COURSE OUTCOMES (CO)

M.SC. MATHEMATICS

For the students admitted in the Academic Year 2021-2022

Programme Code: 02		M.Sc Mathematic	es ·	
Course Code : 21PMA101		Core Paper 1 -ALGEBRA		
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	I	7	105	5

- 1. To study groups, rings, fields and linear transformations which are widely used in many research fields and the concepts of mappings are applied in the subjects like analysisand topology.
- 2. To show the needs from which a modern mathematical attitude may grow and it is of great help in any further axiomatic study of mathematics.
- 3. To study the concept of linear transformations using matrices. Also, Contemporary mathematics and mathematical physics make extensive use of abstract algebra.

	CO1	Remembering the concept of rings, fields and extension fields.
	CO2	Understanding the difference between algebraic and transcendental extensions;
		be able to find the minimal polynomial for algebraic elements over a field and
\mathcal{S}		be able to prove whether a polynomial is irreducible over a given field.
to K5	CO3	Applying Sylow's theorems to determine the structure of certain groups of
K1 t		small order and also Gauss lemma, Eisentein criterion for irreducibility of
$ \times $		rationals.
	CO4	Analyzing Galois groups in simple cases and to apply the group theoretic
		information to deduce results about fields and polynomials.
	CO5	Evaluating linear transformation in Vector Space.

Programme Code: 02		M.Sc Mathemati	ics	
Course Code : 21PMA102 Core Paper 2 - REAL ANALYSIS				
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	I	6	90	4

- 1. To learn about advanced topics in Riemann's Stieltjes Integrals.
- 2. To study the mean value theorem for Riemann and Riemann's Stieltjesintegrals.
- 3. To study directional derivatives, total derivatives, Jacobian determinant and their applications.

Course Outcomes (CO)

	CO1	Remembering the upper and lower integrals and the Riemann conditions.
	CO2	Understanding the difference between necessary and sufficient conditions
K5		for Riemann's Stieltjes Integrals.
to]	CO3	Identifying the sufficient conditions for differentiability and mixed partial
K1		derivatives.
	CO4	Analyzing the Jacobian determinant to understand the Implicit and Inverse
		function theorems.
	CO5	Evaluating the complex integration and Labesgue integral

Programme Code: 02		M. Sc Mathematics		
Course Code: 20 PMA103		Core Paper 3 - Ordinary Differential Equations		
Batch 2021-2023	Semester I	Hours / Week 7	Total Hours 105	Credits 5

Course Objectives

- 1. To understand the concepts of fundamental matrix and successive approximation for finding solution.
- 2. To enable the students to know the concepts of non-homogeneous linear systems with constant co-efficient and periodic co-efficient.
- 3. To gain knowledge in the area of linear oscillations and non-linear oscillations.

	CO1	Remembering the different types of differential equations.
	CO2	Understanding the concept of linear oscillations and non-linear
\mathcal{S}		oscillations.
to K5	CO3	Applying the notions of fundamental matrix and successive
		approximations in the system of differential equations.
K1	CO4	Analyzing the non-homogeneous linear systems with constant co-
		efficient and periodic co-efficient.
CO5 Evaluating the solutions for homogeneous systems with linear and		
		linear oscillations

Programme Code :02		M. Sc Mathematics		
Course Code:21PMA104		Core paper 4 - NUMERICAL METHODS		
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	I	6	90	4

- 1. To solve the linear equations, non-linear equations and interpolating the values using numerical methods.
- 2. To obtain the solution of Boundary Value Problems and Characteristic Value Problems using Numerical Methods.
- 3. To find the Solution of Ordinary Differential Equations and Partial Differential Equations using Numerical methods.

Course Outcomes (CO)

	CO1	Remembering various numerical methods for finding the solution of algebraic		
16		and transcendental equations.		
K.	CO2	Demonstrating various numerical algorithms for solving simultaneous linear		
to K5		algebraic equations.		
K1	CO3	Applying various numerical methods to solve differential equations.		
	CO4	Analyzing the Boundary Value Problems and Characteristic Value Problems.		
	CO5	Evaluating the Characteristic values using power method		

Programme Code: 02		M. Sc Mathematics		
Course Code	: 21PMA205	Core Paper 5 - COMPLEX ANALYSIS		
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	II	7	105	4

Course Objectives

- 1. To study Cauchy's theorem and applying it for a rectangle and a disk.
- 2. To know various types of singularities and evaluation of definite integrals using residues.
- 3. To understand the concept of power series expansions and canonical products.

	CO1	Recalling rectifiable arcs and line integrals as functions of arcs.
	CO2	Explaining the concepts of Local mapping theorem, Cauchy residue theorem
X		and its applications.
to]	CO3	Applying the Residue theorem on definite integrals.
\overline{X}	CO4	Analyzing the Riemann mapping theorem and Schwarz – Christoffel formula.
	CO5	Determining the genus of an Entire function.

Programme Code: 02		M.Sc Mathematics		
Course Code: 21PMA206		Core Paper 6 - Partial Differential Equations		
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	II	6	90	4

- 1. To studylinear partial differential equations and non-linear partial differential equations.
- 2. To know the concept of partial differential equations and their role in modern mathematics.
- 3. To understand the concepts of wave equations and diffusion equations.

Course Outcomes (CO)

	CO1	Finding the solutions of the heat equation, wave equation and the Laplace
		equation subject to boundary conditions
	CO2	Understanding the method of separation of variables and the method of
\mathcal{S}		integral transforms.
to K5	CO3	Applying calculus of variations in finding elementary solutions of diffusion
K1 t		equations.
\mathbf{X}	CO4	Analyzing the solutions of non-linear partial differential equations by using
		Charpit's and Jacobi's methods.
	CO5	Evaluating the elementary solutions of wave equations, diffusion equations
		using calculus of variations.

Į	Programm	neCode :02		M. Sc Mathematics	
	Course Code: 21PMA207		Core Paper 7-MECHANICS		
Ī	Batch	Semester	Hours / Week	Total Hours	Credits
	2021-2023	II	6	90	4

Course Objectives

- 1. To know the basic concepts of the Mechanical system.
- 2. To understand about the constraints, differential forms and Generating functions
- 3.To acquire knowledge about mechanical concepts to solve various problems in Mechanics.

	CO1	Remembering the concepts of generalized co-ordinates and constraints.
K5	CO2	Explaining the derivation of Lagrange's and Hamilton equations.
to	CO3	Applying Hamilton Principle for deriving Hamilton Jacobi Equation.
K1	CO4	Analyzing the Lagrange's and Poisson Brackets.
	CO5	Evaluating the transformation equations using generating functions

Programme Coo	de : 02	M.Sc. Mathematics		
Course Code: 21PMA208		Core Paper 8 – Programming in Python		
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	II	5	75	3

- 1. To introduce the fundamentals of Python Programming.
- 2. To teach about the concept of Functions in Python.
- 3. To impart the knowledge of Lists, Tuples, Files and Directories.

Course Outcomes (CO)

	CO1	Remembering the concept of operators, data types, Loops and control				
ν.		statements in Python programming.				
- K5	CO2	Understanding the concepts of Input / Output operations in file.				
K1 -	CO3	Applying the concept of functions and exception handling				
$ \times$	CO4	Analyzing the structures of list, tuples and maintaining dictionaries.				
	CO5	Justifying the usage of exception handling				

Programme Coo	de : 02	M.Sc. Mathematics		
Course Code: 21PMA2CL		Core Practical 1 – Programming in Python – Practical		
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	II	2	30	2

Course Objectives

- 1. To gain knowledge about the concepts of Python programming.
- 2. To solve algebraic and non-linear ordinary differential equations using Python programs.
- 3. To enhance the students to develop the program writing skills for mathematical problems.

		CO1	Utilizing Python program for finding the Numerical solutions of
		COI	Algebraic and Transcendental Equations.
		CO2	Analyzing the GCD, interpolation values and File management using
		CO2	Python programs
		CO3	Applying, compiling and debugging programs with the help of Python.
	K5	CO4	Analyzing the GCD, interpolation values and File management using Python
6	K3-		programs
	\mathbf{X}		Applying, compiling and debugging programs with the help of Python
		CO3	

Programm	e Code: 02		M. Sc Mathematics	
Course Code: 21PMA309		Core Paper 9 TOPOLOGY		OGY
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	III	7	105	5

- 1. To get basic knowledge in topology and topological spaces.
 - 2. To study the concepts of Compactness and Connectedness.
 - 3. To know the concept of countability axioms.

Course Outcomes (CO)

		Recalling the concept of Basis for a topology.
10	CO1	
to K5		Classifying the ideas of product topology and metric topology.
	CO2	
K K	CO3	Applying countability and separation axioms in proving Urysohn lemma and
		UrysohnMetrization theorem.
	CO4	Analyzing the concepts of limit point compactness and local compactness.
	CO5	Deducing the properties of Regular, Normal and Hausdorff spaces.

Programm	eCode: 02		M. Sc Mathematics	
Course Code:	21PMA310	Core Paper 10 FUNCTIONAL ANALYSIS		
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	III	7	105	5

Course Objectives

- 1. To know the concepts of Normed linear spaces, Banach spaces and Hilbert spaces.
- 2. To understand the ideas of Uniform boundedness principles, closed graph theorem and Open mapping theorem.
- 3. To comprehend the notions of spectral radius, the spectral theorem and Operators on Hilbert spaces.

	CO1	Remembering the concepts of semi norms and Quotient spaces.
v	CO2	Understanding the ideas of Uniform boundedness principles.
to K5	CO3	Applying the concepts of eigenspectrum on normed linear spaces and
		spectral radius on Banach spaces.
CO4 Analyzing the results of Adjoint, Self-Adjoint, Normal		Analyzing the results of Adjoint, Self-Adjoint, Normal and Unitary
		Operators defined on Hilbert spaces.
	CO5	Evaluating the results of Adjoint, Self-Adjoint, Normal and Unitary Operators
		defined on Hilbert spaces.

Programme	Code : 02	M	I. Sc Mathematics	
Course Code:	21PMA311	Core Paper 11 M	MATHEMATICAL S	STATISTICS
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	III	7	105	5

- 1. To study the concepts of random variables and different types of distributions.
- 2. To determine the moments of the distribution function by using the characteristic functions.
- 3. To understand the Methods of finding estimates, Sample moments and their functions

Course Outcomes (CO)

		Remembering the random events and random variables of different
	CO1	distributions.
3		Classifying the properties of characteristic functions of various distributions.
to K5	CO2	
1 tc	CO3	Identifying the types of estimates for various probability distribution
Ξ		functions.
	CO4	Analyzing the functions by using various significance tests.
	CO5	Evaluating Characteristic function and moments of various distributions.

Extra Departmental Course (EDC)				
	RESEARCH METHODOLOGY:			
Course Code: 21PMA3X1		APPROACHES AND TECHNIQUES		NIQUES
Batch Semester		Hours / Week	Total Hours	Credits
2021-2023	III	2	30	2

Course Objectives

- 1. To know the basic concepts of research process and its methodologies.
- **2.** Todiscuss the concepts and procedures of sampling, data collection, analysis and reporting.
 - **3.** To develop the skills involved in hypothesis testing and its significance.

	CO1	Remembering the research problem and technique and defining a problem are developing a research Plan.
K5	CO2	Classifying the census and sample survey and different types of sample
[CO3	designs Analyzing the Hypothesis by using various significance tests.
K1	CO3	Identifying the population variance, Chi – square as a Non- parametric
	CO4	Test.
	CO5	Interpreting the results of data using Statistical tools.

ProgrammeCode :02		N	M. Sc Mathematics	
Course Code: 21PMA412		Core Paper 12 MATHEMATICAL METHODS		L METHODS
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	IV	8	120	5

- 1. To study the concept of Fourier transforms.
- 2. To impart analytical ability in solving variational problems and integral equations.
- 3. Touse calculus of variation to find the extremum of a functional.

Course Outcomes (CO)

	CO1	Finding the solution of Fredholm and Volterra Integral equations.
	CO2	Explaining the method to reduce the differential equations to Integral
		equations.
	CO3	Solving Maximum or minimum of a functional using Calculus of Variation
3		Techniques.
to K5	CO4	Analyzing the Euler's finite difference method, the Ritz method and
K1 t		Kantorovich's method.
\simeq	CO5	Evaluating Fourier sine and cosine transforms of given function and to solve
		PDE's by means of Fourier transforms.

Programme Code: 02		M. Sc Mathematics		
Course Code:21PMA413		Core Paper 13 CONTROL THEORY		
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	IV	8	120	5

Course Objectives

- 1. Toknow the basic results of Differential Equations and Fixed Point Methods.
- 2. To study the basics of observability, controllability, stability, stability, optimal Control of linear and nonlinear system.
- 3. To develop skills to review research papers in the field of Controllability Problems.

	CO1	Choosing ordinary differential equations through state-space representations towards analyzing and designing dynamical systems.
	Understanding mathematical techniques to formulate and solve co	
to K5	CO2	theory problems.
to	CO3	Solving the stability of the given linear and nonlinear system using matrix
K1	CO3	theory.
	CO4	Analyzing various optimal control formulations and necessary conditions
	CO4	of optimal control.
	CO5	Evaluating the stabilization and optimal control via feedback control.

Programme Code:02		M. Sc Mathematics		
Course Code:21PMA414		Core Paper 14 OBJECT ORIENTED PROGRAMMING		
		WITH C++ - THEO	RY	
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	IV	5	75	4

- 1. To enable the students to learn about the basic concepts of Object Oriented Programming Techniques, class structure, operators, functions in C++ and operators Overloading and Type Conversions.
- 2. To know the differences between object oriented programming and procedure oriented programming.
- 3. To apply object oriented techniques to solve the computing Problems.

Course Outcomes (CO)

	CO1	Finding solutions for problems in Mathematics, Engineering, Science and
	COI	Technology using Object Oriented Programming.
3	CO2	Classifying secured and unsecured data processing by applying
to K5	CO2	Abstraction, Encapsulation and Information hiding.
K1 t		Constructing programmes using C++ features such as composition of
X	CO3	objects, Inheritance and Polymorphism.
	CO4	Analyzing the concepts of Object Oriented Programming to solve real
04		world problems.
	CO5	Evaluating the solutions of Mathematical problems using C++ Programs.

Programme Code: 02		M. Sc Mathematics		
Course Code:21PMA4CM		Core Practical 2 OBJECT ORIENTED PROGRAMMING WITH C++ - PRACTICAL		
Batch	Semester	Hours / Week	Total Hours	Credits
2021-2023	IV	2	30	2

Course Objectives

- 1. To identify and formulate the techniques of software development using Object Oriented Programming concepts.
- 2. To find the solution of complex problems spanning the breadth of the C++ Programming language.
- 3. To write programs for problems in various domains like Mathematics, Science, Technology and real world problems.

	CO1	Applying the concepts of Object Oriented Program for building object based applications.
K5	CO2	Analyzing different logic with suitable validations for a given problem.
K3 to	CO3	Interpret and design the Exception Handling Techniques for resolving run-time errors using file I/O.
	CO4	Analyzing different logic with suitable validations for a given problem.
	CO5	Interpret and design the Exception Handling Techniques for resolving run-time errors using file I/O.

ProgrammeCode :02	M. Sc Mathematics
Course code: 21PMA4Z1	Project
Batch2021-2023	Credits:4

- 1.To study the basic concepts related to the Project work.
- 2.To know the respective research fields.
- 3. To know the concept of writing a dissertation in an effective way.

Course Outcomes (CO)

	CO1	Applying the relative notions in the respective areas and finding the results.
	CO2	Analyzing results with the existing results.
to K5	CO3	Interpreting the results with suitable examples.
	CO4	Analyzing results with the existing results.
K3	CO5	Interpreting the results with suitable examples.

ProgrammeCode: 02	M. Sc Mathematics
Course code: 21PMA0D1	ALC 1 DISCRETE MATHEMATICS AND
	AUTOMATA THEORY
Batch2021-2023	Credits 2

Course Objectives

- 1. To understand mathematical foundations to create mathematical arguments.
- 2. To enable to know how lattices and Boolean algebra are used as mathematical models of network systems.
- 3. To know about Automata Theory and its applications.

	CO1	Remembering the concepts of Mathematical logic.
	CO2	Explaining the implication problems using truth table, replacement
K5		process and rules of inference.
5	CO3	Solving normal forms of given logical expression.
K1	CO4	Analyzing Karnaugh map for simplifying the Boolean expression.
	CO5	Demonstrating the abstract models of DFA, NFA and Turing machine models.

ProgrammeCode :02	M. Sc Mathematics
Course code: 21PMA0D2	ALC 2ASTRONOMY
Batch 2021-2023	Credits 2

- 1. To acquire the knowledge about the celestial objects and planets.
- 2. Develop skills to design observing projects with research telescopes and projects drawing upon data in the literature and in archives.
- 3. To be familiar with the appearance of a range of common astronomical objects, such as asteroids, comets, satellites, planets, stars, and galaxies.

Course Outcomes(CO)

	Course ou	ateomes(CO)
	CO1	Defining about the observed properties of physical systems that comprise
		the known universe.
	CO2	Demonstrate their ability to read, understand, and critically analyze the
to K5		astronomical/physical concepts
to	CO3	Applying their physics and mathematical skills to problems in the areas of
K1		planetary science.
	CO4	Analyze to draw valid scientific conclusions and communicate those
		conclusions in a clear and articulate manner.
	CO5	Determining the Eclipse of a moon

ProgrammeCode: 02	M. Sc Mathematics		
Course code: 21PMA0D3	ALC 3 INTERNET AND JAVA PROGRAMMING		
Batch2021-2023	Credits 2		

Course Objectives

- 1. To understand the difference between C, C++ and Java Programs.
- 2. To explore the Java Applications and to identify the variations between Stand alone java applications and Web based applications.
- 3. To provide the advanced concepts in java programming like Package, Multi Thread and Applet.

	CO1	Remembering the basic concepts of OOPs, Data Types, Control Statements
10		and Tokens.
o K.	CO2	Understanding about the java statements.
K1 to K5	CO3	Applying the concept of Package, Thread and Applet in program
	CO4	Inspect the java concepts and get the new innovative ideas.
	CO5	Evaluating the usage of AWT components in java frames.

ProgrammeCode: 02		M. Sc Mathematics	
Major Elect	ive Paper -FLUID D	YNAMICS	
Batch	Hours / Week	Total Hours	Credits
2021-2023	7	105	5

- 1.To have a good understanding of the fundamental equation of viscous compressible fluid.
- **2.**To enable to Bernoulli equations, Momentum theorems and its applications.
- **3.**To understand the motion of solid bodies in fluid and sound knowledge of boundary layer theory.

Course Outcomes (CO)

	CO1	Defining the fundamental aspects of fluid flow behaviour.
	CO2	Classifying the flow patterns of a fluid (gas or liquid) depend on its
3		characteristic.
to K5	CO3	Utilizing the fluid dynamics to analyze the flow of air over the surface to
		calculate pressure, changes in velocity using the Blasius's equation.
K1	CO4	Analyzing the steady state kinetic energy equation for fluid flow systems
		and estimate pressure drop in fluid flow systems.
	CO5	Interpret the solution of boundary layer equation.

Programme Code: 02	M. Sc Mathematics		
M	ajor Elective Paper -	GRAPH THEORY	
Batch	Hours / Week	Total Hours	Credits
2021-2023	7	105	5

Course Objectives

- 1. It enables students to impart the different concepts of theory of graphs.
- 2. The study helps to modelling the real word problems to get solutions.
- 3. It motivates the students to pursue research.

	CO1	Remembering different types of graphs and their applications
K5	CO2	Understand various operations on graphs
to K	CO3	Analysis the applications of different parameters of a graph.
	CO4	Applying the concept of chromatic and domination numbers and its real life
K1		applications
	CO5	Determining mathematical modeling using graph theory concepts.

ProgrammeCode: 02	M. Sc Mathematics		
Major Elective Paper- FUND	AMENTALS OF A	CTUARIAL MATH	IEMATICS
Batch	Hours / Week	Total Hours	Credits
2021-2023	7	105	5

- 1 To use standard techniques of mathematics to solve problems in actuarial science
- 2. To calculate the values of Annuity and Annuity dues.
- 3.To know the concepts of Life insurance premiums, Temporary assurance, Whole Life assurance and the values of policies.

Course Outcomes (CO)

	CO1	Remembering the concept of Insurance policies and its benefits.
K5	CO2	Understanding the consequences of events involving risk and uncertainity.
to K	CO3	Applying various modelling techniques to evaluate quantitative risk analysis.
K1 to	CO4	Analysing the appropriate Life insurance plans suitable for the individual or
K		concern.
	CO5	Estimating the policy values and surrender values

ProgrammeCode: 02	M. Sc Mathematics		
Major Elective Paper -		PTOGRAPHY	
Batch2021-2023	Hours / Week	Total Hours	Credits
	7	105	5

Course Objectives

- 1.To enable the students to acquire the knowledge about Classical Cipher Systems, Shift Registers and Public Key systems.
- 2.To be familiar with information security awareness and a clear understanding of its importance.
- 3. To be exposed to the importance of integrating people, processes and technology.

	CO1	Remembering the basic encryption techniques.
3	CO2	Understanding the cryptographic theories, principles and technique used in
to K		security properties.
	CO3	Constructing a range of different cryptosystems from an applied view point.
K1	CO4	Analyzing the methods of Cryptography
	CO5	Explaining public key systems

Programme Code: 02	M.Sc Mathematics		
Major Elective Paper: STOCHASTIC PROCESSES			
Batch	Hours / Week	Total Hours	Credits
2021-2023	7	105	5

- 1. To know the basic concepts of Laplace transforms.
- 2. To study the fundamentals of stochastic process.
- 3. To know the applications of queuing systems.

Course Outcomes(CO)

	CO1	Remembering the basic concepts of Difference equations.
	CO2	Understanding the concents of Markey shains
3	CO2	Understanding the concepts of Markov chains.
o K	CO3	Identifying the concepts of Poisson process and related distributions.
K1 to K5	CO4	Analyzing Stochastic process in queuing and reliability.
\bowtie	CO5	Explaining the Birth and death process in queuing theory

Programme Code: 02			M.Sc Mathematics	
Major Elective – Mathematical Modeling				
Batch		Hours / Week	Total Hours	Credits
2021-2023		7	105	5

Course Objectives

- 1. To understand physical systems through Mathematical models.
- 2. To understand applications of differential equations, difference equations and graph theory in Mathematical modelling.

	CO1	Remembering the basic concepts of differential equations.
K5	CO2	Understanding the properties Mathematical Models.
to	CO3	Identifying difference equations through modeling.
K	CO4	Analyzing the concepts of seven bridge problem.
	CO5	Evaluating the matrices associated with the directed graphs

ProgrammeCode: 02	ProgrammeCode: 02 M. Sc Mathematics		
Non Major Elective Pa	Non Major Elective Paper - SYSTEMS ANALYSIS AND DESIGN		
Batch2021-2023 Hours / Week Total Hours Credits			
	4	60	5

- 1. To enable the learners to understand the concepts of Foundations for systems development, Structuring system requirements and Designing Data bases.
- 2. To explain the principles, methods and techniques of systems development.
- 3. To elaborate on the application areas for different types of methods.

Course Outcomes (CO)

	CO1	Defining and describe the phases of the system development life cycle.
5	CO2	Demonstrating the forms and reports and designing interfaces.
to K5	CO3	Building the system development alternatives.
	CO4	Examining the system analysis problems.
K1	CO5	Evaluating the developed system for implementation and maintenance

ProgrammeCode: 02		M. Sc Mathematics	
Non-Major Elective	Paper - VISUAL BA	SIC AND ORACLE	
Batch	Hours / Week	Total Hours	Credits
2021-2023	4	60	5

Course Objectives

- 1. To develop visual programming skills for modern software development.
- 2. To get the knowledge on Graphical User Interface.
- 3. To apply Visual Basic controls in data base managementsystem.

	CO1	Remembering the fundamentals of visual basic and procedures.
5	CO2	Understanding the Visual Basic controls and command button properties.
to K.	CO3	Making use of visual data manager and data bound control for the database
		programming with Visual Basic.
K	CO4	Analyzing the connection between ORACLE and VB.
	CO5	Evaluating the usage of DDL and DML queries in Relational databases

ProgrammeCode: 02 M. Sc Mathematics			
Non Major Elective Paper- FUZZY LOGIC AND NEURAL NETWORKS			
Batch	Hours / Week	Total Hours	Credits
2021-2023	4	60	5

- 1. To understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy operations and fuzzy logic.
- 2. To know the concepts of neural networks and neuro-modeling.
- 3. To study the basics of neural network architectures and some learning algorithms.

Course Outcomes (CO)

	CO1	Recalling the difference between crisp set theory and fuzzy set theory.
K5	CO2	Explaining the concepts of operations on fuzzy set.
to	CO3	Applying the learning methods in neural network architectures.
K1	CO4	Examining the Back propagation learning algorithm.
	CO5	Demonstrating the fuzzy set theory and neural networks in real applications

ProgrammeCode: 02	ProgrammeCode: 02 M. Sc Mathematics			
Non Major Elective Paper -MEASURE AND INTEGRATION				
Batch	Hours / Week	Total Hours	Credits	
2021-2023	4	60	5	

Course Objectives

- 1. To understand the concepts of Measurable functions and Integrable functions.
- 2. To know about Lebesgue measure and Lebesgue integral.
- 3. To apply measurable functions in convegence theorems and The Radon Nikodym theorem.

	CO1	Remembering the concepts of Measure and outer measure	
	CO2	O2 Classifying the difference between various measures	
K5	CO3	Applying measure theory in theorems like monotone convergence theorem,	
9		bounded convergence theorem .	
K1	CO4	Analyzing L ^p spaces.	
	CO5	Demonstrating the concepts of differentiation and integration in terms of	
		Lebesgue	