KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

Re-accredited by NAAC with A+ Grade (4th Cycle)

College of Excellence awarded by UGC

Coimbatore **–** *641 029*

DEPARTMENT OF MATHEMATICS

COURSE OUTCOMES (CO)

M. Sc MATHEMATICS

For the students admitted in the

Academic Year 2025-2026

Programme Code: 02		M.Sc Mathematics		
Course Code : 25PMA101		Core Paper 1 -ALGEBRA		
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	I	7	105	5

- 1. To study groups, rings, fields and linear transformations which are widely used in many research fields and the concepts of mappings are applied in the subjects like analysisand topology.
- 2. To show the needs from which a modern mathematical attitude may grow and it is of great help in any further axiomatic study of mathematics.
- 3. To study the concept of linear transformations using matrices. Also, Contemporary mathematics and mathematical physics make extensive use of abstract algebra.

Course Outcomes (CO)

	CO1	Remembering the concept of rings, fields and extension fields.
	CO2	Understanding the difference between algebraic and transcendental extensions;
		be able to find the minimal polynomial for algebraic elements over a field and
\mathcal{S}		be able to prove whether a polynomial is irreducible over a given field.
K1 to K5	CO3	Applying Sylow's theorems to determine the structure of certain groups of small order and also Gauss lemma, Eisentein criterion for irreducibility of rationals.
	CO4	Analyzing Galois groups in simple cases and to apply the group theoretic information to deduce results about fields and polynomials.
	CO5	Evaluating linear transformation in Vector Space.

Programme Code: 02		M.Sc Mathematic	es	
Course Code	: 25PMA102	Core Paper 2 - R	EAL ANALYSIS	
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	I	6	90	4

Course Objectives

- 1. To learn about advanced topics in Riemann's Stieltjes Integrals.
- 2. To study the mean value theorem for Riemann and Riemann's Stieltjes integrals.
- 3. To study directional derivatives, total derivatives, Jacobian determinant and their applications.

	CO1	Remembering the upper and lower integrals and the Riemann conditions.
CO2 Understanding the difference between necessary and sufficient conditi		
3		Riemann's Stieltjes Integrals.
[o	CO3	Identifying the sufficient conditions for differentiability and mixed partial
K1		derivatives.
	CO4	Analyzing the Jacobian determinant to understand the Implicit and Inverse
		function theorems.
	CO5	Evaluating the complex integration and Labesgue integral.

Programme Code: 02		M. Sc Mathematics		
Course Code: 25PMA103		Core Paper 3 - Ordinary Differential Equations		
Batch 2025-2027	Semester I	Hours / Week 7	Total Hours 105	Credits 5

- 1. To understand the concepts of fundamental matrix and successive approximation for finding solution.
- 2. To enable the students to know the concepts of non-homogeneous linear systems with constant co-efficient and periodic co-efficient.
- 3. To gain knowledge in the area of linear oscillations and non-linear oscillations.

Course Outcomes (CO)

	CO1	Remembering the different types of differential equations.
2	CO2 Understanding the concept of linear oscillations and non-linear oscillations.	
1 to K5	CO3	Applying the notions of fundamental matrix and successive approximations in the system of differential equations.
K1	CO4	Analyzing the non-homogeneous linear systems with constant coefficient and periodic co-efficient.
	CO5	Evaluating the solutions for homogeneous systems with linear and non-linear oscillations

Programme Code :02		M. Sc Mathematics		
Course Code: 25PMA104		Core paper 4 - NUMERICAL ANALYSIS		
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	I	6	90	4

Course Objectives

- 1. To solve the linear equations, non-linear equations and interpolating the values using numerical methods.
- 2. To obtain the solution of Boundary Value Problems and Characteristic Value Problems using Numerical Methods.
- 3. To find the Solution of Ordinary Differential Equations and Partial Differential Equations using Numerical methods.

	CO1	Remembering various numerical methods for finding the solution of algebraic and transcendental equations.
to K5	CO2	Demonstrating various numerical algorithms for solving simultaneous linear algebraic equations.
7		argeoraic equations.
K1	CO3	Applying various numerical methods to solve differential equations.
	CO4	Analyzing the Boundary Value Problems and Characteristic Value Problems.
	CO5	Evaluating the Characteristic values using power method

Programme Code: 02		M. Sc Mathematics		
Course Code	Course Code : 25PMA205 Core Paper 5 - COMPLEX ANALYS		SIS	
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	II	7	105	4

- 1. To study Cauchy's theorem and applying it for a rectangle and a disk.
- 2. To know various types of singularities and evaluation of definite integrals using residues.
- 3. To understand the concept of power series expansions and canonical products.

Course Outcomes (CO)

	CO1	Recalling rectifiable arcs and line integrals as functions of arcs.
to K5	CO2	Explaining the concepts of Local mapping theorem, Cauchy residue theorem and its applications.
<u> </u>	CO3	Applying the Residue theorem on definite integrals.
	CO4	Analyzing the concepts of Weirstras's theorem and Taylor series.
	CO5	Determining the genus of an Entire function.

Programme Code: 02		M.Sc Mathematics		
Course Code: 25PMA206		Core Paper 6 - Partial Differential Equations		
		•		•
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	II	6	90	4

Course Objectives

- 1. To study linear partial differential equations and non-linear partial differential equations.
- 2. To know the concept of partial differential equations and their role in modern mathematics.
- 3. To understand the concepts of wave equations and diffusion equations.

	CO1	Finding the solutions of nonlinear partial differential equations by using Charpit's and Jocobi methods
8	CO2	Understanding the classification of PDE's and interpret the solutions using analytical methods.
K1 to K5	CO3	Applying the method of separation of variables and the method of integral transforms to solve the initial, boundary value problems.
\bowtie	CO4	Analyzing the solutions of Laplace equations subject to the boundary conditions.
	CO5	Evaluating the elementary solutions of wave equations, diffusion equations using calculus of variations.

ProgrammeCode :02		M. Sc Mathematics		
Course Code: 25PMA207		Core Paper 7-MECHANICS		
Batch 2025-2027	Semester II	Hours / Week 6	Total Hours 90	Credits 4

- 1. To know the basic concepts of the Mechanical system.
- 2. To understand about the constraints, differential forms and Generating functions
- 3. To acquire knowledge about mechanical concepts to solve various problems in Mechanics.

Course Outcomes (CO)

	CO1	Remembering the concepts of generalized co-ordinates and constraints.
K5		
to K	CO2	Explaining the derivation of Lagrange's and Hamilton equations.
	CO3	Applying Hamilton Principle for deriving Hamilton Jacobi Equation.
K Z	CO4	Analyzing the Lagrange's and Poisson Brackets.
	CO5	Evaluating the transformation equations using generating functions

Programme Code: 02		M.Sc. Mathematics		
Course Code: 25PMA208		Core Paper 8 – PROGRAMMING IN PYTHON		
Batch 2025-2027	Semester II	Hours / Week 5	Total Hours 75	Credits 3

Course Objectives

- 1. To introduce the fundamentals of Python Programming.
- 2. To teach about the concept of Functions in Python.
- 3. To impart the knowledge of Lists, Tuples, Files and Directories.

	CO1	Remembering the concept of operators, data types, Loops and control				
S		statements in Python programming.				
-K5	CO2 Understanding the concepts of Input / Output operations in file.					
K1 -	CO3	Applying the concept of functions and classes.				
\mathbf{X}	CO4	O4 Analyzing the structures of list, tuples and maintaining dictionaries.				
	CO5 Justifying the usage of exception handling.					

Programme Code : 02		M.Sc. Mathematics		
Course Code: 25PMA2CL		Core Practical 1 – Programming in Python – Practical		
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	II	2	30	2

- 1. To gain knowledge about the concepts of Python programming.
- 2. To solve algebraic and non-linear ordinary differential equations using Python programs.
- 3. To enhance the students to develop the program writing skills for mathematical problems.

Course Outcomes (CO)

	CO1	Finding the GCD of two integers using Python program
K5	CO2	Demonstration of Pascal's triangle with the help for loop in Python
K3- k	СОЗ	Utilizing Python program for finding the Numerical solutions of Algebraic and Transcendental Equations.
	CO4 Analyzing the GCD, interpolation values and File management using Python programs	
	CO5 Applying, compiling and debugging programs with the help of Pyth	

Programme Code: 02		M. Sc Mathematics		
Course Code: 25PMA309		Core Paper 9 TOPOLOGY		
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	Π	7	105	5

Course Objectives

- 1. To get basic knowledge in topology and topological spaces.
- 2. To study the concepts of Compactness and Connectedness.
- 3. To know the concept of countability axioms.

		Knowing the basic definitions and properties in topology.
10	CO1	
K5		Classifying the ideas of product topology and metric topology.
to	CO2	
\mathbf{K}	CO3	Applying countability and separation axioms in proving Urysohn lemma and
		UrysohnMetrization theorem.
	CO4	Analyzing the concepts of limit point compactness and local compactness.
	CO5	Deducing the properties of Regular, Normal and Hausdorff spaces.

ProgrammeCode: 02		M. Sc Mathematics		
Course Code: 25PMA310		Core Paper 10 FUNCTIONAL ANALYSIS		ANALYSIS
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	Ш	7	105	5

- 1. To know the concepts of Normed linear spaces, Banach spaces and Hilbert spaces.
- 2. To understand the ideas of Uniform boundedness principles, closed graph theorem and Open mapping theorem.
- 3. To comprehend the notions of spectral radius, the spectral theorem and Operators on Hilbert spaces.

Course Outcomes (CO)

	CO1	Remembering the concepts of semi norms and Quotient spaces.		
K5	CO2	Understanding the operators on normed linear spaces.		
to I	CO3	CO3 Applying Uniform boundedness principle on bounded operators.		
K1 t	CO4	Analyzing the concepts of eigenspectrum on normed linear spaces and		
		spectral radius on Banach spaces.		
	CO5	Evaluating the results of Adjoint, Self-Adjoint, Normal and Unitary Operators		
		defined on Hilbert spaces.		

Programme Code: 02		M. Sc Mathematics		
Course Code:	25PMA311	Core Paper 11 MATHEMATICAL STATISTICS		STATISTICS
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	III	7	105	5

Course Objectives

- 1. To study the concepts of random variables and different types of distributions.
- 2. To determine the moments of the distribution function by using the characteristic functions.
- 3. To understand the Methods of finding estimates, Sample moments and their functions

		Remembering the random events and random variables of different distributions.
	CO1	
K 4		Classifying the properties of characteristic functions of various distributions.
to	CO2	
K1	CO3	Identifying the types of estimates for various probability distribution functions.
	CO4	Analyzing the functions by using various significance tests.
	CO5	Evaluating Characteristic function and moments of various distributions.

Extra Departmental Course (EDC)				
Course Code: 25PMA3X1		Extra Departmental Course: Documentation		
			Software: LaTeX-Practical	
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	III	2	30	2

- 1. LaTeX is a typewriting system that is extremely useful for typing and formatting scientific documents.
- 2. Inserting images is very intuitive and easy in LaTeX.
- 3. This practical subject is Job and Skill oriented for the students.

Course Outcomes (CO)

	CO1	Choosing LaTeX software to prepare letters in alignments
	CO2	Illustrate tables using LaTeX software
K5	CO3	Select LaTeX software for preparing dissertation, curriculum vitae and other
5		documents
\aleph	CO4	Construct molecular orbital diagrams for Homo and Hetro diatomic molecules
		by using MO diagram package in LaTeX software
	CO5	Recommending the LaTeX software for preparing Power Point Presentation

ProgrammeCode :02		M. Sc Mathematics		
Course Code: 25PMA412		Core Paper 12	Core Paper 12 MATHEMATICAL METHODS	
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	IV	8	120	5

Course Objectives

- 1. To study the concept of Fourier transforms .
- 2. To impart analytical ability in solving variational problems and integral equations.
- 3. Touse calculus of variation to find the extremum of a functional.

	CO1	Finding the solution of Fredholm and Volterra Integral equations.
	CO2	Explaining the method to reduce the differential equations to Integral equations.
to K5	CO3	Solving Maximum or minimum of a functional using Calculus of Variation Techniques.
KI	CO4	Analyzing the Euler's finite difference method, the Ritz method and Kantorovich's method.
	CO5	Evaluating Fourier sine and cosine transforms of given function and to solve PDE's by means of Fourier transforms.

Programme Code: 02		M. Sc Mathematics		
Course Code:25PMA413		Core Paper 13 CONTROL THEORY		THEORY
Batch	Semester	Hours / Week	Total Hours	Credits
2025-2027	IV	8	120	5

- 1. To know the basic results of Differential Equations and Fixed Point Methods.
- 2. To study the basics of observability, controllability, stability, stabilizability, optimal Control of linear and nonlinear system.
- 3. To develop skills to review research papers in the field of Controllability Problems.

Course Outcomes (CO)

	CO1	Choosing ordinary differential equations through state-space representations towards analyzing and designing dynamical systems.
K5	CO2	Understanding mathematical techniques to formulate and solve control theory problems.
K1 to	CO3	Solving the stability of the given linear and nonlinear system using matrix theory.
	CO4	Analyzing various optimal control formulations and necessary conditions of optimal control.
	CO5	Evaluating the stabilization and optimal control via feedback control.

Programme Code:02			M. Sc Mathematics	
Course Code:25PMA414			BJECT ORIENTED WITH C++ - THEC	
Batch 2025-2027	Semester IV	Hours / Week 5	Total Hours 75	Credits 4

Course Objectives

- 1. To enable the students to learn about the basic concepts of Object Oriented Programming Techniques, class structure, operators, functions in C++ and operators Overloading and Type Conversions.
- 2. To know the differences between object oriented programming and procedure oriented programming.
- 3. To apply object oriented techniques to solve the computing Problems.

	CO1	Finding solutions for problems in Mathematics, Engineering, Science and Technology using Object Oriented Programming.
3	CO2 Classifying secured and unsecured data processing by applying Abstraction, Encapsulation and Information hiding.	
K1 to	CO3	Constructing programmes using C++ features such as composition of objects, Inheritance and Polymorphism.
	CO4	Analyzing the concepts of Object Oriented Programming to solve real world problems.
	CO5	Evaluating the solutions of Mathematical problems using C++ Programs.

Programme Code: 02		M. Sc Mathematics		
Course Code:25PMA4CM		Core Practical 2 OBJECT ORIENTED PROGRAMMING WITH C++ - PRACTICAL		
Batch 2025-2027	Semester IV	Hours / Week 2	Total Hours 30	Credits 2

- 1. To identify and formulate the techniques of software development using Object Oriented Programming concepts.
- 2. To find the solution of complex problems spanning the breadth of the C++ Programming language.
- 3. To write programs for problems in various domains like Mathematics, Science, Technology and real world problems.

Course Outcomes (CO)

	CO1	Remembering the syntax to write a program
	CO2	Understanding the concepts of object oriented programming.
to K5	CO3	Applying the concepts of Object Oriented Program for building object based applications.
K 3	CO4	Analyzing different logic with suitable validations for a given problem.
	CO5	Interpret and design the Exception Handling Techniques for resolving run-time errors using file I/O.

ProgrammeCode :02	M. Sc Mathematics
Course code: 25PMA4Z1	Project
Batch 2025-2027	Credits:2

Course Objectives

- 1. To study the basic concepts related to the Project work.
- 2. To know the respective research fields.
- 3. To know the concept of writing a dissertation in an effective way.

		CO1	Remembering the fundamental notions to undergo a project
N	3	CO2	Understanding the necessary concepts in the respective area of research
	to	CO3	Applying the relative notions in the respective areas and finding the results.
	K3	CO4	Analyzing results with the existing results.
L		CO5	Interpreting the results with suitable examples.

Programme Code: 02	M. Sc Mathematics		
Major Elective Paper -FLUID DYNAMICS			
Batch	Hours / Week	Total Hours	Credits
2025-2027	7	105	5

- 1.To have a good understanding of the fundamental equation of viscous compressible fluid.
- 2. To enable to Bernoulli equations, Momentum theorems and its applications.
- 3. To understand the motion of solid bodies in fluid and sound knowledge of boundary layer theory.

Course Outcomes (CO)

	CO1	Defining the fundamental aspects of fluid flow behavior.
	CO2	Classifying the flow patterns of a fluid (gas or liquid) depend on its characteristic.
3	GOA	
1 to K5	CO3	Utilizing the fluid dynamics to analyze the flow of air over the surface to calculate pressure, changes in velocity using the Blasius's equation.
K1	CO4	Analyzing the steady state kinetic energy equation for fluid flow systems and estimate pressure drop in fluid flow systems.
	CO5	Interpret the solution of boundary layer equation.

Programme Code: 02		M. Sc Mathematics	
Ma	Major Elective Paper - GRAPH THEORY		
Batch	Hours / Week	Total Hours	Credits
2025-2027	7	105	5

Course Objectives

- 1. It enables students to impart the different concepts of theory of graphs.
- 2. The study helps to modelling the real word problems to get solutions.
- 3. It motivates the students to pursue research.

	CO1	Remembering different types of graphs and their applications
CO2 Understand various operations on graphs CO3 Analysing the applications of different parameters of a graph		Understand various operations on graphs
to K	CO3	Analysing the applications of different parameters of a graph.
	CO4	Applying the concept of chromatic and domination numbers and its real life
K1		applications
	CO5	Determining mathematical modeling using graph theory concepts.

ProgrammeCode: 02	M. Sc Mathematics		
Major Elective Paper- FUND	DAMENTALS OF A	CTUARIAL MATH	EMATICS
Batch	Hours / Week	Total Hours	Credits
2025-2027	/	105	5

- 1 To use standard techniques of mathematics to solve problems in actuarial science
- 2. To calculate the values of Annuity and Annuity dues .
- 3. To know the concepts of Life insurance premiums, Temporary assurance, Whole Life assurance and the values of policies.

Course Outcomes (CO)

	CO1	Remembering the concept of Insurance policies and its benefits.
K5	CO2	Understanding the consequences of events involving risk and uncertainity.
to K	CO3	Applying various modelling techniques to evaluate quantitative risk analysis.
	CO4	Analysing the appropriate Life insurance plans suitable for the individual or
K1		concern.
	CO5	Estimating the policy values and surrender values

ProgrammeCode: 02	M. Sc Mathematics		
Major Elective Paper - CRYPTOGRAPHY			
Batch 2025-2027	Hours / Week	Total Hours	Credits
	7	105	5

Course Objectives

- 1. To enable the students to acquire the knowledge about Classical Cipher Systems, Shift Registers and Public Key systems.
- 2. To be familiar with information security awareness and a clear understanding of its importance.
- 3. To be exposed to the importance of integrating people, processes and technology.

	CO1	Remembering the basic encryption techniques.
K5	CO2	Understanding the cryptographic theories, principles and technique used in
to K		security properties.
	CO3	Constructing a range of different cryptosystems from an applied view point.
K1	CO4	Analyzing the methods of Cryptography
	CO5	Explaining public key systems

Programme Code: 02		M.Sc Mathematics	
Major Elective Paper : STOCHASTIC PROCESSES			
Batch	Hours / Week	Total Hours	Credits
2025-2027	7	105	5

- 1. To know the basic concepts of Laplace transforms.
- 2. To study the fundamentals of stochastic process.
- 3. To know the applications of queuing systems.

Course Outcomes(CO)

	CO1	Remembering the basic concepts of Difference equations.
10	CO2	Understanding the concepts of Markov chains.
to K5	CO3	Identifying the concepts of Poisson process and related distributions.
1 tc	CO4	Analyzing Stochastic process in queuing and reliability.
\overline{X}	CO5	Explaining the Birth and death process in queuing theory

Programme Code: 02	M.Sc Mathematics		
Major Elective - Mathematical Modeling			
Batch	Hours / Week	Total Hours	Credits
2025-2027	7	105	5

Course Objectives

- 1. To understand physical systems through Mathematical models.
- 2. To understand applications of differential equations, difference equations and graph theory in Mathematical modelling.

	CO1	Remembering the basic concepts of differential equations.
K5	CO2	Understanding the properties Mathematical Models.
to	CO3	Identifying difference equations through modeling.
\mathbf{K}	CO4	Analyzing the concepts of seven bridge problem.
	CO5	Evaluating the matrices associated with the directed graphs

ProgrammeCode: 02		M. Sc Mathematics	
Non Major Elective Pa	iper - SYSTEMS A	NALYSIS AND DE	SIGN
Batch 2025-2027	Hours / Week	Total Hours	Credits
	4	60	5

- 1. To enable the learners to understand the concepts of Foundations for systems development, Structuring system requirements and Designing Data bases.
- 2. To explain the principles, methods and techniques of systems development.
- 3. To elaborate on the application areas for different types of methods.

Course Outcomes (CO)

	CO1	Defining and describe the phases of the system development life cycle.
K5	CO2	Demonstrating the forms and reports and designing interfaces.
to K	CO3	Building the system development alternatives.
	CO4	Examining the system analysis problems.
K1	CO5	Evaluating the developed system for implementation and maintenance

Programme Code: 02		M. Sc Mathematics		
Course Code: 23PGI2N2		Non-Major Elective	e Paper : INFORMATI	ON SECURITY
Batch 2025-2027	Semester II	Hours/Week 4	Total Hours 60	Credits 4

Course Objectives

- 1. Students will identify the core concepts of Information security.
- 2. To examine the concepts of Information Security.
- 3. To design and implement the security features for IT and Industrial sectors.

	CO1	To Learn the principles and fundamentals of information security.
16	CO2	To Demonstrate the knowledge of Information security concepts
- K5	CO3	To Understand about Information Security Architecture.
K	CO4	To Analyze the various streams of security in IT and Industrial sector.
	CO5	To know about Cyber Laws and Regulations.

ProgrammeCode: 02		M. Sc Mathematics	
Non Major Elective Paper- FUZZY	LOGIC AND NEURAI	L NETWORKS	
Batch	Hours / Week	Total Hours	Credits
2025-2027	4	60	5

- 1. To understand the concepts of fuzzy sets, fuzzy operations and fuzzy logic.
- 2. To know the concepts of neural networks and neuro-modeling.
- 3. To study the basics of neural network architectures and some learning algorithms.

Course Outcomes (CO)

	CO1	Recalling the difference between crisp set theory and fuzzy set theory.
K 5	CO2	Explaining the concepts of operations on fuzzy set.
to]	CO3	Applying the learning methods in neural network architectures.
K1	CO4	Examining the Back propagation learning algorithm.
	CO5	Demonstrating the fuzzy set theory and neural networks in real applications

ProgrammeCode: 02		M. Sc Mathematics	
Non Major Elective Paper -M	IEASURE AND INTEGRA	ATION	
Batch	Hours / Week	Total Hours	Credits
2025-2027	4	60	5

Course Objectives

- 1. To understand the concepts of Measurable functions and Integrable functions.
- 2. To know about Lebesgue measure and Lebesgue integral.
- 3. To apply measurable functions in convergence theorems and The Radon Nikodym theorem.

	CO1	Remembering the concepts of Measure and outer measure
	CO2	Classifying the difference between various measures
3	CO3	Applying measure theory in theorems like monotone convergence theorem,
t		bounded convergence theorem .
K1	CO4	Analyzing L ^p spaces.
' '	CO5	Demonstrating the concepts of differentiation and integration in terms of
		Lebesgue

ProgrammeCode: 02	M. Sc Mathematics
Course code: 25PMA0D1	ALC 1 DISCRETE MATHEMATICS AND
	AUTOMATA THEORY
Batch 2025-2027	Credits 2

- 1. To understand mathematical foundations to create mathematical arguments.
- 2. To enable to know how lattices and Boolean algebra are used as mathematical models of network systems.
- 3. To know about Automata Theory and its applications.

Course Outcomes (CO)

	CO1	Remembering the concepts of Mathematical logic.
	CO2	Explaining the implication problems using truth table, replacement
3		process and rules of inference.
to	CO3	Solving normal forms of given logical expression.
\overline{X}	CO4	Analyzing Karnaugh map for simplifying the Boolean expression.
' '	CO5	Demonstrating the abstract models of DFA, NFA and Turing machine
		models.

ProgrammeCode :02	M. Sc Mathematics
Course code: 25PMA0D2	ALC 2 ASTRONOMY
Batch 2025-2027	Credits 2

Course Objectives

- 4. To acquire the knowledge about the celestial objects and planets.
- 5. Develop skills to design observing projects with research telescopes and projects drawing upon data in the literature and in archives.
- 6. To be familiar with the appearance of a range of common astronomical objects, such as asteroids, comets, satellites, planets, stars, and galaxies.

	CO1	Defining about the observed properties of physical systems that comprise the known universe.
to K5	CO2	Demonstrate their ability to read, understand, and critically analyze the astronomical/physical concepts
K1 to	CO3	Applying their physics and mathematical skills to problems in the areas of planetary science.
	CO4	Analyze to draw valid scientific conclusions and communicate those conclusions in a clear and articulate manner.
	CO5	Determining the Eclipse of a moon

ProgrammeCode: 02	M. Sc Mathematics	
Course code: 25PMA0D3	ALC 3 INTERNET AND JAVA PROGRAMMING	
Batch 2025-2027	Credits 2	

- 1. To understand the difference between C, C++ and Java Programs.
- 2. To explore the Java Applications and to identify the variations between Stand alone java applications and Web based applications.
- 3. To provide the advanced concepts in java programming like Package, Multi Thread and Applet.

	CO1	Remembering the basic concepts of OOPs, Data Types, Control Statements
		and Tokens.
to K5	CO2	Understanding about the java statements.
K1 to	CO3	Applying the concept of Package, Thread and Applet in program
	CO4	Inspect the java concepts and get the new innovative ideas.
	CO5	Evaluating the usage of AWT components in java frames.