KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

COIMBATORE - 641 029

CURRICULUM AND SCHEME OF EXAMINATIONS (CBCS) (2025-2026 and onwards)

for the programme

PG DIPLOMA IN DATA ANALYTICS

Offered by

DEPARTMENT OF MATHEMATICS

Programme Outcome (PO)

- **PO 1**. To bridge the gap between the industry and the technology.
- **PO 2**. To visualize the real-world challenges and interpret their complexity with the help of data science.
- **PO 3**. To enhance the economic growth of the country by implementing various data analytics techniques.

Programme Specific Outcome (PSO)

- **PSO 1**. Recalling the various types of data and effectively make use of them to analyze the progress of any sector.
- **PSO 2**. Interpretation of the data to overcome the threats and challenges that arise time to time.
- **PSO 3**. Application of various statistical tools to measure the efficiency, investigate the quality and to predict the stability of any product in the Marketing arena.
- **PSO 4**. Inferring the usage of appropriate analytics techniques to optimize the Profit Loss ratio.
- **PSO 5**. Implementation of Machine Learning and Artificial Intelligence to reduce the man power and time consumption while dealing with complex real world problems.

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

COIMBATORE – 641 029

ProgrammeName : PG Diploma in Data Analytics Curriculum and Scheme of Examination under CBCS

(Applicable to the students admitted during the Academic Year 2025-2026 and onwards)

ter	Subject Title of the Paper	tion ycle	E	Exam. N	Iarks	n of n (S)	its	
Semester	Code	Title of the Paper	Instruction hours/cycle	CIA	ESE	TOTAL	Duration of Exam (hours)	Credits
	25PDD101	Core Paper 1 :Big Data and Data Analytics	2	25	75	100	3	2
I	25PDD102	Core Paper 2 :RDBMS and SQL	2	25	75	100	3	2
	25PDD103	PDD103 Core Paper 3 :Python Programming		25	75	100	3	2
	25PDD1CL	Core Practical 1: Python Programming – Lab	2	40	60	100	3	2
		Total	8			400		8
II	25PDD204	Core Paper 4 :Machine Learning and Programming Based on Application Implementation	2	25	75	100	3	2
	25PDD2CL	Core Practical 2 :R Programming- Lab	2	40	60	100	3	2
	25PDD2Z1	Project – Viva Voce	4	40	160	200	-	4
		Total	8			400		8
		Grand Total	16			800		16

Note:

CBCS – Choice Based Credit System

CIA – Continuous Internal Assessment

ESE – End of Semester Examinations

Components of Continuous Internal Assessment (50 Marks)

Components		Marks	Total			
	Th	neory				
CIA I	75	(75+75)				
CIA II	CIA II 75 conve		25			
Attenda	ance	5	25			
Other	Others*					
	Pra	ctical				
CIA Pra	ctical	25				
Observation	Notebook	10	40			
Attenda	Attendance					
Project						
Revie	ew	30	40			
Regula	rity	10	40			

^{*} Class Participation, Case Studies Presentation, Field Work, Field Survey, Group Discussion, Term Paper, Workshop/Conference Participation. Presentation of Papers in Conferences, Quiz, Report/Content writing. Etc.

^{**} Two Assignments to be given. (Each 5 marks).

BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN

K1-Remembering; K2-Understanding; K3-Applying; K4-Analyzing; K5-Evaluating

1. Theory Examination:

(i) CIA I & II and ESE: 75 Marks

Knowledge Level	Section	Marks	Description	Total
K1 Q1 to 10	A (Answer all)	10 x 1 = 10	MCQ	
K1 – K5 Q11 to 15	B (Either or pattern)	5 x 5 = 25	Short Answers	75
K2 – K5 Q16 to 20	C (Either or pattern)	5 x 8 = 40	Descriptive / Detailed	

2. ESE Practical Examination:

Knowledge	Section	Marks	Total
Level	Section	Marks	1 Otai
К3	Experiments	50	
K4		10	60
K5	Record Work		

3. ESE Project Viva Voce:

Knowledge Level	Section	Marks	Total
К3	Project Report	120	
K4		40	160
K5	Viva voce		

Progr		P	G Diploma in Dat	a Analytics	
Title of th	Co	ore Paper 1	1 : Big Data and D	ata Analytics	
Batch 2025-2026	Hours / Week 2		Hours 0	Credits 2	Employability/ Skill
					Development

- 1.To understand and apply scaling up machine learning techniques and associated computing techniques and technologies.
- 2.To identify the characteristics of datasets and compare the trivial data and big data for various applications.
- 3.To recognize and implement various ways of selecting suitable model parameters for different machine learning techniques.

Course Outcomes (CO)

	CO1	Understand the different dimensions of digital data.
K5	CO2	Apply the concept of data classification on different types of data.
to	CO3	Analyze the characteristics of different patterns of data.
\overline{K}	CO4	Implement the concept of big data in different scenarios.
	CO5	Compare the various types of data

Unit I (6 Hours)

Data Evolution: Data Development Time Line – ICT Advancement - a Perspective – Data Growth - a Perspective – IT Components - Business Process – Landscape - Data to Data Science – Understanding data: Introduction – Type of Data: Numeric – Categorical – Graphical – High Dimensional Data — Data Classification – Hot Data – Cold Data – Warm Data – Thick Data – Thin Data - Classification of digital Data: Structured, Semi-Structured and Un-Structured.

Unit II (6 Hours)

Sources of Data: Time Series – Transactional Data – Biological Data – Spatial Data – Social Network Data – Data Evolution – Data Sources.

Data Science: Data Science-A Discipline – Data Science Vs Statistics – Mathematics - Programming Language - Database, - Machine Learning. Data Analytics Relation: Data Science, Analytics, Big Data Analytics.

Unit III (6 Hours)

Data Science Components: Data Engineering, Data Analytics-Methods and Algorithm, Data Visualization Big Data: Introduction to Big Data: Evolution - What is Big Data - Sources of Big Data. Characteristics of Big Data 6Vs - Big data- Challenges of Conventional Systems.

Unit IV (6 Hours)

Data Processing Models – Limitation of Conventional Data Processing Approaches – Big Data Myths - Data Discovery-Traditional Approach, Big Data Technology: Big Data Exploration - Data Augmentation – Operational Analysis – 360 View of Customers – Security and Intelligence.

Unit V (6 Hours)

Big Data Use cases – Big Data Technology Potentials – Limitations of Big Data and Challenges - Big Data Roles Data Scientist, Data Architect, Data Analyst – Skills – Case Study: Big Data – Customer Insights – Behavioral Analysis – Big Data Applications - Marketing – Retails – Insurance – Risk and Security – Health care.

Teaching Methods

Smart ClassRoom /Powerpoint presentation /Seminar /Quiz/Discussion /Flipped Class/ peer Learning/ Experiential Learning/Blended learning

Text Book:

1. V. Bhuvaneswari, T. Devi, (2016), Big Data Analytics: A Practitioner's Approach.

Reference Books:

- 1. Han Hu, Yonggang Wen, Tat Seng, Chua, XuelongLi, (2015), Toward Scalable Systems for Big, SeemaAcharya, SubhashniChellappan, Big Data Analytics, Wiley.
- 2. Paul C. Zikopoulos, Chris Eaton, Dirk deRoos, Thomas Deutsch, George Lapis, (2012), Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, McGraw Hill

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	Н	M	S
CO2	Н	S	S	Н	S
CO3	Н	Н	S	M	Н
CO4	M	Н	Н	M	S
CO5	Н	M	S	Н	S

Progr	ramme Code:02	F	PG Diploma in Data Analytics		
Title of t	the Paper	Core P	aper 2 : RDBMS	and SQL	
Batch 2025-2026	Hours / Week 2	Total Hours 30	Credits 2	Employability/ Skill Development	

- 1. To develop the knowledge in various Database concepts, queries, normalization and reports.
- 2. To be able to construct a new normalized database.

Course Outcomes (CO)

	CO1	Remember the basic concepts of database management systems and
		database techniques.
ν,	CO2	Understand Data constraints and CODDs rules, DML and DDL statements
to K5		of ORACLE
	CO3	Apply various DDL and DML statements, joins queries, PL / SQL
 		statements.
	CO4	Analyze the granting and revoking permissions, cursors
	CO5	Explain BCNF.

Unit I (6 Hours)

Introduction: Purpose of Database Systems - View of Data - Data Models - Database Languages - Database Administrator - Database Users. Entity Relationship Model: Basic concepts –Mapping Cardinalities - Entity Relationship Diagram- E-R Features - Relational Model: Structure of Relational Databases - Relational Algebra.

Unit II (6 Hours)

Interactive SQL: Invoking SQL* Plus- data definition- data manipulation in DBMS – The oracle data types –DML and DDL statements-Data constraints- arithmetic, logical operators- oracle functions- grouping data from tables -manipulating dates- union, intersect and minus clause-Granting permissions- Revoking permissions- Codd's Rules.

Unit III (6 Hours)

PL/SQL: Introduction, PL/SQL syntax, understanding PL/SQL block structure, oracle transactions, cursors, stored procedures, stored functions, database triggers — **Creating Default Tabular Report***.

Unit IV (6 Hours)

SQL: Nested Sub queries - Derived Relations - **Views** * - Joined Relations. Integrity Constraints: Domain Constraints- Referential Integrity - Assertions.

Unit V (6 Hours)

Functional Dependencies - Relational Database Design: Pitfalls – Normalization-First Normal Form, Second Normal Form, Third Normal Form and BCNF.

Teaching Methods

Smart ClassRoom /Powerpoint presentation /Seminar /Quiz/Discussion /Flipped Class/ peer Learning/ Experiential Learning/Blended learning

Text Book:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, (2006), Database System Concepts, Fifth Edition, Tata McGraw Hill Publication. (Unit I, IV and V)
- 2. Ivan Bayross, (2007), Commercial application development using ORACLE developer 2000, First Edition. (Unit II and III)

Reference Books:

- 1. Bipin.C.Desai, (2000), An Introduction to database systems, First Edition, Galgotia Publication.
 - 2. Ivan Bay Ross(1995), Oracle 7 The Complete Reference, First Edition, BPB Publications, Chennai.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	Н	S	Н	M	S
CO2	Н	Н	S	Н	S
CO3	S	Н	S	M	Н
CO4	M	S	Н	M	S
CO5	S	Н	S	M	S

Progr	ramme Code:02		F	PGDiploma in Da	ata Analytics
Title of the Paper 7			itle :Core	Paper 3: Python	Programming
Batch 2025-2026	Hours / Week 2	_	Hours 60	Credits 2	Employability/ Skill Development

- 1. To introduce the fundamentals of Python Programming.
- 2. To teach about the concept of Functions in Python.
- 3. To impart the knowledge of Lists, Tuples, Files and Directories.

Course Outcomes (CO)

	CO1	Remembering the concept of operators, data types, Loops and control					
ν.	COI	statements in Python programming.					
- K5	CO2 Understanding the concepts of Input / Output operations in file.						
K1 -	CO3 Applying the concept of functions and exception handling						
$ \simeq$	CO4	Analyzing the structures of list, tuples and maintaining dictionaries.					
	CO5	Compare mutable and immutable data types.					

Syllabus

Unit I (6 Hours)

Introduction to Python: Introduction - Python Overview - Getting Started with Python - Comments - Python Identifiers - Reserved Keywords - Variables - Standard Data Types. Operators - Statement and Expression - String Operations - Boolean Expressions - Control Statements - Iteration - While Statement - Input from Keyboard.

Unit II (6 Hours)

Problem solving strategies: Problem Analysis – Algorithms – Flow Charts – *Examples of Algorithms and Flow Charts.

Functions: Built-in functions - Composition of functions - User defined functions - Parameters and Arguments - Function Calls - The return Statement - Python Recursive Function - The Anonymous Functions - Writing Python Scripts.

Unit III (6 Hours)

Strings: Compound Data Type - Len Function - String Slices - Strings are Immutable - String Traversal - Escape Characters - String Formatting Operator - String Formatting Functions.

Lists: Values and Accessing Elements - Lists are Mutable - Deleting Elements from List- Built-in list Operators - Built-in List Methods.

Unit IV (6 Hours)

Tuples: Creating Tuples - Accessing values in Tuples - Tuples are Immutable - Tuple Assignment - Tuples as Return Values - Variable Length Argument Tuples - Basic Tuple Operations - Built-in Tuple Functions.

Dictionaries: Creating a Dictionary - Accessing values in a Dictionary - Updating Dictionary - Deleting elements from Dictionary - Properties of Dictionary keys - Operations in Dictionary - Built-in Dictionary methods.

Unit V (6 Hours)

Classes and Objects: Overview of OOP - Class Definition - Creating Objects - Objects as arguments - Objects as Return Values - Built-in class attribute - Inheritance - Method Overriding - Data Encapsulation - Data Hiding.

* - Self Study and questions for examinations may be taken from the self study portions also.

Teaching Methods

Smart ClassRoom /Powerpoint presentation /Seminar /Quiz/Discussion /Flipped Class/ peer Learning/ Experiential Learning/Blended learning

Text Book:

1. E. Balagurusamy, Introduction to Computing and Problem Solving using Python Programming, First Edition, 2016, McGraw-Hill Education (India) Pvt. Ltd, Chennai.

Reference Books:

- 1. Ashok NamdevKamthane, Amit Ashok Kamthane, Programming and Problem Solving with Python, McGraw-Hill, First Edition, 2017.
- 2. Martin Jones, Python for Complete Beginners, Createspace Independent Publisher, First Edition, 2015.
- 3. S.A. Kulkarni, Problem Solving and Python Programming, Yes Dee Publishing Pvt. Ltd, First Edition, 2017.

Mapping

PSO CO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	S	Н	M	S	S
CO2	S	S	Н	Н	Н
CO3	Н	M	S	S	Н
CO4	M	S	M	Н	S
CO5	S	Н	M	S	M

Progr	Programme Code:02			PGDiploma in Dat	a Analytics
Title of th	Title	:Core Prac	ctical 1: Python Pr	ogramming- Lab	
Batch 2025-2026			Hours 30	Credits 2	Employability/ Skill Development

- 1. To gain knowledge about the concepts of Python programming.
- 2. To implement various operators in python programming in problem solving.
- 3. To enhance the students to develop the program writing skills for computational problems.

Course Outcomes (CO)

	CO1	Finding the GCD of two integers using Python program.
· K5	CO2	Demonstration of classes and their attributes.
K3-	CO3	Utilizing Python program to solve complex mathematical problems.
	CO4	Analyzing the GCD and LCM of integers using Python programs.
	CO5	Applying, compiling and debugging programs with the help of Python.

LIST OF PRACTICAL PROGRAMS

- 1. Program to determine the Greatest Common Divisor (GCD) of any two integers.
- 2. Program to find the Least Common Multiple (LCM) of any two integers using functions.
- 3. Program to find the number of instances of different digits in a given number.
- 4. Program to find the number of vowels and consonants in a text string.
- 5. Program to get a list of words and sort them in Alphabetical Order.
- 6. Program to find permutation of all characters in a string.
- 7. Program to compute the Average of Best of Two of Three Assignment Tests.
 Maximum Marks for each Assignment is 25. Fractional Marks in Final Average are Rounded off to the Nearest and Highest Whole Number.
- 8. Program to sort an integer list using Bubble sorting technique.
- 9. Program to Draw a Histogram using Turtle Graphics
- 10. Program to demonstrate Classes and their Attributes.

Distribution of Marks in ESE

CIA

Experiment : 50 CIA Practical : 25

Record : 10 Exam

Total 60 Attendance : 5

Observation Note : 10

book

Total 40

To be awarded jointly by the internal and external examiners.

Teaching Methods

Smart ClassRoom /Powerpoint presentation /Seminar /Quiz/Discussion /Flipped Class/ peer Learning/ Experiential Learning/Blended learning

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	Н	Н	S
CO2	M	M	Н	Н	M
CO3	Н	S	S	S	M
CO4	S	Н	S	M	S
CO5	Н	S	S	Н	M

Progr	ramme Code:02		F	PGDiploma in Dat	a Analytics
Title of th	Core I	Paper 4 :M	Iachine Learning a	nd Programming	
	Based on Application Implementation				
Batch 2025-2026			Hours 30	Credits 2	Employability/ Skill Development

- 1. To understand the concepts of Machine Learning.
- 2. To implement various programming applications.
- 3. To know more about Neural networks.

Course Outcomes (CO)

	CO1	Remembering the basic concepts of R Data Structures.
K5	CO2	Applying the notions of Machine Learning and Computational Learning.
5	CO3	Exerting the fundamental concepts of Artificial Neural Networks.
$\overline{\Delta}$	CO4	Evaluating the concept of Tree and Probabilistic Model.
	CO5	Investigating the problem solving approach of artificial intelligence.

Unit I (6 Hours)

Introducing to R: Introducing to R-R Data Structures – Help Functions in R- Vectors – Scalars – Declarations – Recycling – Common Vector Operations

Unit II (6 Hours)

Introduction to Learning: ML Fundamentals - Algorithmic models of learning, Learning classifiers, functions, relations, grammars, value functions.

ML- Models: Parameter Estimation, sufficient statistics, decision trees, neural networks, support vector machines, Bayesian networks.

Unit III (6 Hours)

Tree & Probabilistic Model: Tree and Probabilistic Models – Learning with Trees – Decision Trees – Constructing Decision Trees, Probability and Learning – Data into Probabilities – Basic Statistics.

Unit IV (6 Hours)

Computational Learning: Computational Learning theory, mistake bound analysis, sample complexity analysis, VC dimension, Occam learning, accuracy and confidence boosting.

Unsupervised Learning: Unsupervised Learning: Clustering, mixture models, k-means clustering, hierarchical clustering, and distributional clustering, Reinforcement learning;

Unit V (6 Hours)

Introduction to Artificial Neural Networks: Introduction- History of neural networks-multilayer perceptions- -What are RNNs – Introduction to RNNs.

Artificial Intelligence and Knowledge Representation: Introduction – Definition – Future of Artificial Intelligence – Characteristics of Intelligent Agents – Typical Intelligent Agents – Problem Solving Approach.

Teaching Methods

Smart ClassRoom /Powerpoint presentation /Seminar /Quiz/Discussion /Flipped Class/ peer Learning/ Experiential Learning/Blended learning

Text Book

- 1. Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, PearonPublisher, 2018.
- 2. Brett Lantz, Machine Learning with R Second Edition, Packt Publisher, 2015.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	S	M	S
CO2	Н	S	S	Н	S
CO3	Н	S	Н	M	Н
CO4	M	Н	Н	M	S
CO5	S	M	Н	M	S

Progr	amme Code:02		F	PGDiploma in Data	a Analytics
Title of t	Titl	le :Core P	ractical 2: R Progr	amming – Lab	
Batch 2025-2026			Hours 30	Credits 2	Employability/ Skill Development

- 1. To gain knowledge about the concepts of R programming.
- 2. To solve Probability Distributions, Correlation and Regression Analysis using R programs.
- 3. To enhance the students to develop the Data AnalyticswithMachine Learning.

Course Outcomes (CO)

	CO1	Remembering the basic terms used in Data Structures.						
	CO2 Understanding and maintenance of data.							
K5	CO3	Applying the notions of Data Visualization and Probability Distributions.						
K3 -	CO4	Exerting the fundamental concept of Artificial Neural Networks.						
	CO5	Evaluating the concept of ML in R with spark and R with H ₂ O						

Program List

- 1. Creating Data Structures
- 2. Manage, Explore and Understanding Data
- 3. Data Visualization
- 4. Probability Distributions
- 5. Correlation and Regression Analysis
- 6. Decision Trees
- 7. Cluster Analysis
- 8. Artificial Neural Networks
- 9. ML in R with Spark
- 10. ML in R with H2O

Reference Book:

1. Machine Learning Using R, Karthik Ramasubramanian, Abhishek Singh, Apress, 2017

Distribution of Marks in ESE

<u>CIA</u>

Experiment : 50 CIA Practical : 25

Record : 10 Exam

Total 60 Attendance : 5

Observation Note : 10

book

Total 40

To be awarded jointly by the internal and external examiners.

Teaching Methods

Smart ClassRoom /Powerpoint presentation /Seminar /Quiz/Discussion /Flipped Class/ peer Learning/ Experiential Learning/Blended learning

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	Н	M	S
CO2	S	S	S	Н	Н
CO3	Н	Н	S	M	Н
CO4	S	Н	S	M	S
CO5	Н	S	M	S	Н

Progr	amme Code:02		F	PGDiploma in Dat	a Analytics
Title of t		F	Project – Viva Vo	ce	
Batch 2025-2026			Hours 60	Credits 4	Employability/ Skill Development

- 1. To understand the research methodology
- 2. To get exposed to real time data and study them.
- 3. To explore the tools and analytics techniques.

Course Outcomes (CO)

K3 to K5	CO1	Choosing the appropriate research area.		
	CO2	Illustration of data.		
	CO3	Applying relevant techniques to study the scenario.		
	CO4	Analyzing the impact factors over the time that lead the fluctuation.		
	CO5	Concluding the study by providing appropriate measures and		
		suggestions.		

<u>Distribution of Marks in ESE</u> <u>Internal</u>

To be awarded jointly by the internal and external examiners

Mapping

	PSO1	PSO2	PSO3	PSO4	PSO5	
PSO						
co						
CO1	S	S	S	Н	Н	
CO2	Н	S	S	M	S	
CO3	S	Н	Н	S	M	
CO4	S	Н	S	S	M	
CO5	Н	M	S	Н	S	