MORE ON NANO PRE-NEIGHBOURHOODS IN NANO TOPOLOGICAL SPACES

P. Sathishmohan¹, V. Rajendran², P.K. Dhanasekaran³ and C. Vignesh Kumar⁴

Department of Mathematics, Kongunadu Arts and Science College, Coimbatore–641 029.

Email: 1 iiscsathish@yahoo.co.in, 3 dhanasekaranmath@gmail.com

Abstract

The basic objective of this paper is to introduce and investigate the properties of nano pre-neighbourhoods, nano pre-interior, nano pre-limit point, nano pre-derived set, nano pre-frontier, nano pre-regular in nano topological spaces and obtain some of its basic results.

1. Introduction

The notion of nano topology was introduced by Lellis Thivagar[1] which was defined in terms of approximations and boundary region of a subset of an universe using an equivalence relation on it and also defined nano-closed sets, nano-interior and nano-closure of a set. He also introduced weak form of nano-open sets namely nano α -open sets, NS-open sets and NP-open sets. In this paper we defined nano pre-neighbourhood, nano pre-interior, nano pre-limit point, nano pre-derived set, nano pre-frontier, nano pre-regular and obtained some of its basic results.

2. Preliminaries

Definition 2.1. [1] Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\}$, where $X \subseteq U$. Then $\tau_R(X)$ satisfies the following axioms:

- U and $\phi \in \tau_R(X)$.
- The union of the elements of any subcollection of $\tau_R(X)$ is in $\tau_R(X)$.
- The intersection of the elements of any finite subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

Then $\tau_R(X)$ is a topology on U called the nano topology on U with respect to X. We call $(U,\tau_R(X))$ is a nano topological space. The elements of $\tau_R(X)$ are called as nano-open sets. The complement of the nano-open sets are called nano-closed sets.

Definition 2.2. [1] Let $(U,\tau_R(X))$ be a nano topological space and $A \subseteq U$. Then A is said to be

- nano semi-open if $A \subseteq Ncl(Nint(A))$.
- nano pre-open if $A \subseteq Nint(Ncl(A))$.
- nano α -open if $A \subseteq Nint(Ncl(Nint(A)))$.
- nano semi pre-open if $A \subseteq Ncl(Nint(Ncl(A)))$.
- Nr-open if A = Nint(Ncl(A)).

NSO(U,X), NPO(U,X), $\tau^{\alpha}_{R}(X)$, NSPO(U,X) and NRO(U,X) respectively denote the families of all nano semi-open, nano pre-open, nano α -open, nano semi pre-open and nano regular-open subsets of U. Let $(U,\tau_{R}(X))$ be a nano topological space and $A \subseteq U$, A is said to be nano semi-closed, nano pre-closed, nano α -closed, nano semi pre-closed and nano regular-closed if its complement is respectively nano semi-open, nano pre-open, nano α -open, nano semi pre-open and nano regular-open.

1

Remark 2.3. [2] If τ_R is the nano topology on U with respect to X, then the set $B = \{U, L_R(X), B_R(X)\}$ is the basis for τ_R .

Definition 2.4. [1] *If* (U,τ_R) *is a nano topological space with respect to* X *where* $X \subseteq U$ *and if* $A \subseteq U$, *then*

- (1) The nano-interior of A is defined as the union of all nano-open subsets of A and is denoted by Nint(A). That is, Nint(A) is the largest nano-open subset of A.
- (2) The nano-closure of A is defined as the intersection of all nano-closed sets containing A and is denoted by Ncl(A). That is, Ncl(A) is the smallest nano-closed set containing A.

Definition 2.5. [1] Let $(U,\tau_R(X))$ be a nano topological space and $A \subseteq U$. Then A is said to be nano pre-open if $A \subseteq Nint(Ncl(A))$. It is denoted by NPO(U). The complement of nano pre-open set is called nano pre-closed and it is denoted by NPF(U).

3. Nano Pre-Neighbourhoods

Definition 3.1. A subset $M_x \subset U$ is called a nano pre-neighbourhood of a point $x \in U$ iff there exists a $A \in NPO(U)$ such that $x \in A \subset M_x$ and a point x is called nano pre-neighbourhood point of the set A.

Definition 3.2. The family of all nano pre-neighbourhoods of the point $x \in U$ is called nano pre-neighbourhood of U.

```
Example 3.3. Let U = \{a,b,c,d\}, U/R = \{\{a,c\},\{b\},\{d\}\}\}, X = \{b,c\} and \tau_R(X) = \{U,\phi,\{b\},\{a,b,c\},\{a,c\}\}\}. NPO(U) = \{U,\phi,\{a\},\{b\},\{d\},\{a,b\},\{a,d\},\{b,d\},\{a,b,c\},\{a,b,d\},\{a,c,d\}\}\}.
```

Then $NP - nbd(a) = \{U, \phi, \{a\}, \{a,b\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}\}$ $NP - nbd(b) = \{U, \phi, \{b\}, \{a,b\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}\}$

 $NP - nbd(c) = \{U, \phi, \{a, b, c\}, \{a, c, d\}\}\$

 $NP - nbd(d) = \{U, \phi, \{d\}, \{a,d\}, \{b,d\}, \{a,b,d\}, \{a,c,d\}\}$

Lemma 3.4. Let $\{B_i | i \in I\}$ be a collection of nano pre-open sets in a nano topological space U, then $\bigcup B_i \in NPO(U)$.

Definition 3.5. The union of all nano pre-open sets which are contained in A is called the nano pre-interior of A and is denoted by Npint(A) or by NA_* . As the union of nano pre-open sets is nano pre-open, NA_* is nano pre-open.

Definition 3.6. The intersection of nano pre-closed sets containing a set A is called the nano pre-closure of A and is denoted by Npcl(A) or by NA^* .

Lemma 3.7. Let A and B be subsets of a space U. Then the following hold for the nano pre-closure operator.

- (1) $A = NA^*$.
- (2) $NA^* \subset NB^* if A \subset B$.
- (3) $(A^*)^* = A^*$.
- (4) A^* is pre-closed set in X.

Lemma 3.8. For every subset $W \subset U$, we have the following.

- (1) $(U W)^* = U W_*$.
- (2) $(U W)_* = U W^*$.

Corollary 3.9. *Intersection of two nano pre-closed sets is nano pre-closed.* **Proof** *Let* $A,B \in NPF(U)$. *Then we have,* $Ncl[Nint(A \cap B)] = Ncl[Nint(A) \cap Nint(B)] \subset Ncl(Nint(A)) \cap Ncl(Nint(B)) \subset A \cap B$. *Thus,* $A \cap B$ *in* NPF(U).

Theorem 3.10. A subset of a space U is nano pre-open iff it is a nano pre-neighbourhood of each of its points.

Proof: Let $G \subset U$ be a nano pre-open set. Then by definition it is clear that G is a nano pre-neighbourhood of each of its points, since for every $x \in G$, $x \in G \subset G$ and G is nano pre-open.

Conversely, suppose G is a nano pre-neighbourhood of each of its points. Then for each $x \in G$, there exists $S_x \in NPO(x)$ such that $S_x \subset G$. Then, $G = \bigcup_{x \in G} S_x$.

Since each S_x is nano pre-open it follows that G is nano pre-open by Lemma-3.4.

Lemma 3.11. Let A be a set in a space U. A point $x \in U$ is in the nano preinterior of A iff there is a $G \in NPO(x)$ such that $G \subseteq A$.

Proof: Suppose $x \in NA_*$. By definition of NA_* there exists $G \in NPO(x)$ such that $x \in G$ and $G \subset A$. Hence there is $G \in NPO(x)$, such that $G \subset A$. Conversely, suppose $G \in NPO(x)$, such that $G \subset A$. Then $x \in G \subset NA_*$. Hence $x \in A_*$.

Now, we define the following.

Definition 3.12. A point $x \in U$ is called a nano pre-interior point of $A \subset U$ if $x \in NA_*$.

In view of this definition and Lemma 3.11, one can prove the following.

Lemma 3.13. Let U be a space and $A \subseteq X$, and $x \in X$. Then x is a nano pre-interior point of A iff A is a nano pre-neighbourhood of x.

Note 3.14. Since every nano open set is nano pre-open, every nano-interior point of a set $A \subset U$ is a nano pre-interior point of A. Thus, $Nint(A) \subset NA_*$. In general, $Nint(A) \neq NA_*$, which is shown by the following.

Example 3.15. Consider the set $U = \{a,b,c\}$ equipped with the nano topology $\tau_R(X) = \{\phi,\{b\},U\}$. Then we obtain NPO(X) = $\{\phi,\{b\},\{a,b\},\{b,c\},U\}$. Now, if we take $A = \{a,b\}$ then Nint(A) = $\{b\}$ and NA_{*} = $\{a,b\}$. This shows that Nint(A) \neq NA_{*}.

Theorem 3.16. Let U be a space and $A \subset U$. Then NA_* is the largest nano pre-open subset of U contained in A.

Proof: To prove NA* is the largest nano pre-open set contained in A. In other words, to show that NA* contains any other nano pre-open set which is contained in A. Now, assume that U is any nano pre-open set with $U \subset A$. Let $x \in U$. Then by definition $x \in U \subset A$. Therefore A is a nano pre-neighbourhood of $x \in U$. This shows that x is a nano pre-interior point of A. Then $x \in NA$ * by Lemma 3.13 as $x \in U$ implies $x \in NA$ *. Thus $u \in NA$ * and NA* is nano pre-open. Therefore NA* contains every nano pre-open set X contained in A and hence NA* is the largest nano pre-open set contained in A.

Theorem 3.17. A is nano pre-open iff $A = NA_*$.

Proof: Suppose $A = NA_*$. As NA_* is nano pre-open set, by hypothesis, A is nano pre-open. Next suppose that A is nano pre-open. Then A is a nano pre-open set contained in A. But NA_* is the largest nano pre-open set contained in A by Theorem 3.10. Therefore, $A \subset NA_*$. But $NA_* \subset A$ always. Hence $A = NA_*$.

Lemma 3.18. *If* $A \subseteq B$ *then* $NA_* \subseteq NB_*$. Easy Proof is omitted.

Note 3.19. $NA_* = NB_*$ does not imply that A = B. This is shown by the following.

Example 3.20. Let $X = \{a,b,c\}$ and $\tau_R(X) = \{U,\phi,\{a\},\{b,c\}\}$. Then it can be readily verified that $\tau_R(X)$ is a nano topology on U and, $NPO(U) = \tau_R(X)$. Take, $A = \{a\}$ and $B = \{a,b\}$. Then, we obtain, $NA_* = \{a\} = NB_*$. But $A \neq B$.

Lemma 3.21. Let A and B be subsets of U. Then,

- (1) $NA_* \cup NB_* \subset N(A \cup B)_*$.
- (2) $N(A \cap B)_* \subset NA_* \cap NB_*$.

Proof follows by Lemma 3.18

In general, $N(A \cap B)_* \neq NA_* \cap NB_*$ as shown by the following.

Example 3.22. Let $U=\{a,b,c\}$ and $\tau_R(X)=\{U,\phi,\{a,b,c\}\}$. Then it can be verified that $\tau_R(X)$ is a nano topology on U and, $NPO(U)=\{\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},U,\phi\}$. Take, $A=\{a\}$ and $B=\{a,c\}$, then $A\cap B=\{a\}$. Then, we have, $NA_*=\{a\}$, $NB_*=\{a,c\}$ and $N(A\cap B)_*=\phi$. Thus, it follows that $NA_*\cap NB_*=\{a\}\neq \phi=N(A\cap B)_*$.

Next, we define the nano pre-limit point of a subset of space U in the following.

Definition 3.23. A point $x \in U$ is said to be a nano pre-limit point of A iff for each $X \in NPO(X)$, $X \cap (A - \{x\}) = \phi$.

Remark 3.24. Since every nano-open set is nano pre-open, it follows that every nano pre-limit point of A is a nano-limit point of A.

Definition 3.25. The set of all nano pre-limit points of A is said to be the nano pre-derived set of A and in denoted by NPD(A).

Note 3.26. By Remark 3.18 it follows that $NPD(A) \subset ND(A)$, where ND(A) is the nano-derived set of A.

But in general, converse does not hold.

Example 3.27. Let $U = \{a,b,c,d\}$ with the topology $\tau_R(X) = \{\phi,\{b\},\{d\},X\}$. Then, NPO(X) = $\{\{\phi,\{b\},\{d\},\{b,d\},\{b,c,d\},X\}$. For $A = \{a,c,d\}$, ND(A) = $\{a,c\}$ and NPD(A) = $\{c\}$. Hence ND(A) $\not\subset$ NPD(A).

Lemma 3.28. A is nano pre-closed set iff it contains the set of its nano pre-limit points.

Proof: By definition, U - A is nano pre-open set since A is nano pre-closed. Thus, A is nano pre-closed iff each point of (U - A) has a nano pre-neighbourhood contained in (U - A) iff no point of (U - A) is nano pre-limit point of A, or equivalently that A contains each of its nano pre-limit points.

Lemma 3.29. Let A and B be subsets of a space U and $A \subseteq B$. Then, $A \subseteq B$ implies $NPD(A) \subseteq NPD(B)$.

Proof: Let $x \in U$ be a nano pre-limit point of A. Then by definition, there exists $U \in NPO(U)$ such that $U \cap (A - \{x\}) \neq \emptyset$ and, hence it follows that $X \cap (B - \{x\}) \neq \emptyset$, i.e., x is a nano pre-limit point of B. Thus, the nano pre-derived set of A is a subset of the nano pre-derived set of B.

In general, the converse does not hold in the above Lemma. This is shown by the following.

Example 3.30. Consider the space $\{U,\tau_R(X)\}$ as defined in the Example 3.20. Let $A = \{a,c\}$ and $B = \{b,c\}$. Then, we obtain NPD(A) = $\{b\}$ = NPD(B). But $A \neq B$.

Theorem 3.31. Let A and B be subsets of a space U. Then we have the following properties.

- (1) $NPD(\phi) \neq \phi$.
- (2) $x \in NPD(A)$ implies $x \in NPD(A \{x\})$.
- (3) $NPD(A) \cup NPD(B) \subset NPD(A \cup B)$.
- (4) $NPD(A \cap B) \subset NPD(A) \cap NPD(B)$.

Proof:

(1) It is obvious.

- (2) Let x ∈ NPD(A). Then x is a nano pre-limit point of A. That is, every nano pre-neighbourhood of x contains at least one point of A other than x. It means that every nano pre-neighbourbood of x contains at least one point other than x of A {x}. Hence x is a nano pre-limit point of A {x} and therefore x ∈ NPD(A {x}).
- (3) and (4) follow by Lemma 3.29.

Lemma 3.32. Let U be a space and A be subset of U. Then $A \cup NPD(A)$ is a nano pre-closed set.

Proof: Let $x \notin \text{UNPD}(A)$. This implies $x \notin A$ and $x \notin \text{NPD}(A)$. Since $x \notin \text{NPD}(A)$, there exists a nano pre-open neighbourhood N_x of x which contains no point of A other than x. But $x \notin A$. So N_x contains no point of A, which implies $N_x \subset U - A$. Again, N_x is a nano pre-open neighbourhood of each of its points. But as N_x does not contain any point of A, no point of N_x can be a nano pre-limit point of A. Therefore no point of N_x can belong to NPD(A). This implies that $N_x \subset X - \text{NPD}(A)$. Hence, it follows that $x \in N_x \subset (X - (A \cup \text{NPD}(A)))$.

Therefore, A U NPD(A) is nano pre-closed.

Remark 3.33. Comparing the results of Lemma-3.32 and Lemma-3.7(i), one can easily write that, $A \cup NPD(A)$ is nano pre-closed iff $NA^* = A \cup NPD(A)$. It is obvious that $NA^* \subset Ncl(A)$.

The converse may be false as shown by the following.

Example 3.34. Let $U = \{a,b,c,d\}$ and $\tau_R(X) = \{\{c\},\{a,d\},\{a,c,d\}\}\}$. Then it can be easily verified that $\tau_R(X)$ is a nano topology on U and $NPO(U) = \{U, \phi, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{b,d\}, \{a,b,c\}, \{a,c,d\}, \{b,c,d\}\}\}$. Take, $A = \{b,d\}$. Then we have $Ncl(A) = \{a,b,d\}$ and $NA^* = \{b,d\}$ which shows that $Ncl(A) \not\subset NA^*$.

Note 3.35. If $NA^* = NB^*$. Then it does not imply A = B.

This is shown by the following.

Example 3.36. Let $U=\{a,b,c,d\}$ and $\tau_R(X)=\{c,\{a,d\},\{a,c,d\}\}$ be a nano topology on U. Then we obtain NPO(U) = $\{U,\varphi,\{a\},\{c\},\{d\},\{a,c\},\{a,d\},\{b,d\},\{a,b,c\},\{a,c,d\},\{b,c,d\}\}$. Then NPF(U) = $\{\{b\},\{b,c\},\{a,b,d\},U,\varphi\}$. Take $A=\{c\}$ and $B=\{b,c\}$. Then NA*= $\{b,c\}=NB*$.

Hence, It follows that $A \neq B$ even though $NA^* = NB^*$.

Theorem 3.37. $NA^* = A - NPD(U - A)$.

Proof: Let $x \in A - NPD(U - A)$. Then $x \in A$ and $x \notin NPD(U - A)$. Since $x \notin NPD(U-A)$, there exists $U \in N-PO(x)$ with $U \cap (U-A) = \phi$. Hence, $x \in X \subset A$, which Implies $x \in NA_*$. Conversely, let $x \in NA_*$. Then $x \notin NPD(U - A)$, for NA_* is nano pre-open neighbourhood of x and, $NA_* \cap (U-A) = \phi$. Also, $NA_* \subset A$. This shows that $x \in A$. Hence $NA_* = A - NPD(U - A)$.

Remark 3.38. Using Lemma 3.8, one can write that $NA_* = U - (U - A)^*$

Theorem 3.39. For subsets $A,B \subset U$. The following hold.

- (1) $NA^* \cup NB^* \subset (NA \cup NB)^*$.
- (2) $(NA \cap NB)^* \subset NA^* \cap NB^*$.

Proof:

- (1) Since $A \subset A \cup B$ and $B \subset A \cup B$. Then by Lemma 2.8(ii), we obtain that $NA^* \subset (NA \cup NB)^*$ and $NB^* \subset (NA \cup NB)^*$. It follows that $NA^* \cup NB^* \subset (NA \cup NB)^*$.
- (2) $(NA \cap NB)$ *subset NA* and $(A \cap B)$ * $\subset NB$ *. Hence It follows that $(A \cap B)$ * $\subset NA$ * $\cap NB$ *.

In general, the equality does not hold in the above Theorem. This can be shown by the following.

Example 3.40. Let $U = \{a,b,c,d\}$ and $\tau_R(X) = \{\{c\},\{a,d\},\{a,c,d\},U,\phi\}$. Take $A = \{c\}$ and $B = \{d\}$ then $A \cup B = \{c,d\}$. Then $NA^* = \{b,c\}$, $NB^* = \{d\}$ and $(A \cup B)^* = \{b,c,d\}$. It follows that $NA^* \cup NB^* = (A \cup B)^*$.

Example 3.41. Let $U = \{a,b,c,d\}$ and $\tau_R(X) = \{\{c\},\{a,d\},\{a,c,d\},U,\phi\}$. Take, $A = \{a\}$ and $B = \{c,d\}$ then $A \cap B = \phi$. Then $NA^* = \{b\}$ and $NB^* = \{b,c,d\}$ and $(A \cap B)^* = \{b\}$. Thus $NA^* \cap NB^* = (NA \cap NB)^*$.

Next we define nano pre-frontier of subset of a space.

Definition 3.42. $NA^* - NA_*$ is said to be the nano pre-frontier of $A \subset U$ and is denoted by NPfr(A). It is obvious that $NPfr(A) \subset Nfr(A)$, the nanofrontier of A.

But in general the converse may not be true.

Example 3.43. Let $U = \{a,b,c,d\}$ and $\tau_R(X) = \{\{c\},\{a,d\},\{a,c,d\},U,\phi\}$. If $A = \{a,b,d\}$. Then, Nint(A) = $\{a,d\}$, Ncl(A) = $\{a,b,d\}$, NA* = $\{a,b,d\}$ and NA* = $\{b,d\}$. This shows that Nfr(A) $\not\subset$ NPfr(A).

Lemma 3.44. For a subset A of a space U,

- (1) $NA^* = NA_* \cup NPfr(A)$
- (2) $NA_* \cap NPfr(A) = \phi$ and (3) $NPfr(A) = NA^* \cap (U A)^*$.

Proof: By definition of NPfr(A), we have

- (1) $NA_* \cup NPfr(A) = NA_* \cup (NA^* NA_*) = NA^*$.
- (2) $NA_* \cap NPfr(A) = NA_* \cup (NA^* NA_*) = \phi$.
- (3) $NPfr(A) = NA^* NA_* = NA^* \cap (U NA_*) = NA^* \cap (U NA)^*$ by Lemma-3.8(i).

Lemma 3.45. NPfr(A) is pre-closed.

Proof: By Lemma 3.44, $NPfr(A) = NA^* \cap (U - NA)^*$, which is nano preclosed by Corollary 3.9.

Now, we define the following.

Definition 3.46. A subset $A \subset U$ is called nano pre-regular if it is both nano pre-open and nano pre-closed set. The family of all nano pre-regular sets of U is denoted by NPR(U). The complement of a nano pre-regular set is also a nano pre-regular.

Next, we prove the following.

Theorem 3.47. $NPfr(A) = \phi \ iff A \in NPR(U)$.

Proof: Let $A \in NPR(U)$. Then $A \in NPO(U)$ and $A \in NPF(U)$. Now, using results of Lemma 3.7 and Theorem 3.17 it follows that $NPfr(A) = \phi$. Conversely, let $NPfr(A) = \phi$. Then we show that $A \in NPR(U)$. Since by hypothesis, $NA^* - NA_* = \phi$. We have $NA^* = NA_*$. But, $NA_* \subset A \subset NA^*$. Therefore, it follows that $A = NA_* = NA^*$ which means $A \in N - PR(U)$.

Theorem 3.48. Let A be subset of U. Then, the following hold.

- (1) NPfr(A) = NPfr(U A).
- (2) $A \in NPO(U)$ iff $NPfr(A) \subset U A$. i.e., $A \cap NPfr(A) = \phi$.
- (3) $A \in NPF(U)$ iff $NPfr(A) \subset A$.

Proof:

- (1) We have, $NPfr(U A) = (U NA)^* \cap (U (U NA))^* = (U NA)^* \cap NA^* = NPfr(A)$ by Lemma 3.44(iii).
- (2) Assume $A \in NPO(U)$. By definition, we have $NPfr(A) = NA^* NA_* = NA^* A$. Since $A \in NPO(U)$. Then, $A \cap NPfr(A) = A \cap (NA^* A) = NA^* \cap (X A) \cap A = \phi$. Conversely, if $A \cap NPfr(A) = \phi$. Then, $A \cap NA^* \cap (U NA_*) = \phi$ implies $A \cap (U NA_*) = \phi$ as $A \subset NA^*$. Thus, $A \subset U (U NA_*) = NA_*$, but on the other hand $NA_* \subset A$. It follows that $A = NA_*$, which implies $A \in NPO(U)$.
- (3) Assume $A \in NPF(U)$. Then, we have $U A \in NPO(U)$. Then by (ii), $NPfr(U-A) \cap (U-A) = \phi$. But, by (i), NPfr(U-A) = NPfr(A). Hence $NPfr(A) \cap (U A) = \phi$. This shows that $NPfr(A) \subset A$. Conversely, if $NPfr(A) \subset A$, then $NA^*-NA_* \subset A$, which implies $NA_* \cup (NA^*-NA_*) \subset A \cup NA_* = A$, which implies $NA^* \subset A$ by 3.44(i) But $A \subset NA^*$. It follows that $A = NA^*$. Hence $A \in NPF(U)$.

Note 3.49. Let A and B be subsets of space U. Then $A \subset B$ does not imply that either $NPfr(A) \subset NPfr(B)$ or $NPfr(B) \subset NPfr(A)$.

This can be verified by the following.

Example 3.50. Let $U = \{a,b,c,d\}$ and $\tau_R(X) = \{\{c\},\{a,d\},\{a,c,d\},U,\phi\}$. Then, case(1): Take $A = \{d\}$ and $B = \{a,c,d\}$. Then $A \subset B$. Also $NA^* = \{d\}$, $NA_* = \{d\}$ and $NPfr(A) = \{\phi\}$. $NB^* = \{U\}$, $NB_* = \{a,c,d\}$ and $pfr(B) = \{b\}$. This shows that $NPfr(A) \in Pfr(B)$. Case-(2): If $A = \{d\}$ and $B = \{c,d\}$ then $A \subset B$. We obtain that $NPfr(A) = \{\phi\}$ and $NPfr(B) = \{d\}$. Thus, $NPfr(B) \in Pfr(A)$.

Theorem 3.51. If $A \in NPO(U) \cup NPF(U)$, then NPfr(A) = NPfr(NPfr(A)). Proof follows by Lemma 3.44(iii), Lemma 3.45 and Lemma 3.48(ii)(iii).

Corollary 3.52. For every $A \subset U$, NPfr(NPfr(NPfr(A))) = NPfr(NPfr(A)). Proof is obvious.

Acknowledgements

The authors are grateful to the anonymous referees for their constructive comments and helpful suggestions.

References

- [1] Lellis Thivagar and Richard.C, On nano forms of weekly open sets, *Int. J. Math. Stat. Invev.* 1(1)(2013) 31-37.
- [2] Pawalk.Z, Rough sets, Int. J. Comput. Inf. Sci. 11 (5)(1982) 341-356
- [3] Pawalk.Z, Rough sets, theoretical aspects of reasoning about data, *Kluwer Academic Publishers*, Boston, 1991