A Text Book on

NANOCHEMISTRY

KALPANADEVI K

A TEXT BOOK ON NANOCHEMISTRY

By

Dr. K. KALPANADEVI, MSc., MPhil., Ph.D.

Assistant Professor and Head,

Department of Chemistry (PG & Research),

Kongunadu Arts and Science College,

Coimbatore.

First Edition : 2017

© Reserved

Price : **Rs. 100.00**

ISBN 978-93-5268-544-8

Preface

The present book entitled "A Text Book of Nanochemistry" contains the essentials of nanochemistry, which include introduction on nanomaterials, their properties, preparation methods and applications. This book will cater to the need of all the students at the BSc., and MSc., level.

The book is written in a simple language so that it will be easier for the students studying in the medium other than English.

It is hoped that the book will be liked by the students and the teachers as well.

I am grateful to a number of authors whose works have been freely consulted while preparing this book.

I am highly thankful to my husband, daughters and my parents for their moral support and encouragement they have shown towards the successful publication of this book.

Dr. K. Kalpanadevi

Dedicated to My Daughters

CONTENTS

1. Introduction

Classification of nanomaterials

- On the basis of the origin Natural nanomaterials Artificial nanomaterials
- On the basis of dimension Zero dimensional (0-D)
 One dimensional (1-D)
 Two dimensional (2-D)
 Three dimensional (3-D)
- On the basis of composition
 Carbon Based Nanomaterials Metal Based Materials Nanocomposites

2. Properties of nanomaterials

- Electrical properties
- Optical properties
- Magnetic properties
- Mechanical properties

3. Synthesis of nanomaterials

- Top-down and Bottom-up approach
- Physical methods

Ball Milling Plasma Arcing Physical vapor deposition (PVD) Electrodeposition Molecular Beam Epitaxy (MBE) Laser ablation • Chemical methods

Chemical vapor deposition (CVD) Sol-gel method High temperature thermal decomposition method Liquid-liquid interface reaction Hydrothermal method Chemical reduction method

4. Characterization of nanomaterials

- Scanning Electron Microscopy (SEM)
- Transmission Electron Microscopy (TEM)
- Atomic Force Microscopy (AFM)
- X-Ray Diffraction (XRD)

5. Applications and hazards of nanomaterials

- Applications of nanomaterials Applications of nanomaterials in environment Applications of nanomaterials in industry
- Hazards of nanomaterials
 Hazards of nanomaterials to human health
 Hazards of nanomaterials to environment

References

TABLE OF CONTENTS

Chapter I: Introduction	
1.1 An overview of nanomaterials	1
1.2 Classification of nanomaterials	3
1.2.1 According to the origin	3
1.2.1.1 Natural nanomaterials	3
1.2.1.2 Artificial nanomaterials	4
1.2.2 According to the dimension	4
1.2.2.1 Zero dimensional (0-D)	4
1.2.2.2 One dimensional (1-D)	4
1.2.2.3 Two dimensional (2-D)	4
1.2.2.4 Three dimensional (3-D)	5
1.2.3 On the basis of structural configuration	5
1.2.3.1 Carbon Based Nanomaterials	5
1.2.3.2 Metal Based Materials	5
1.2.3.3 Dendrimers	5
1.2.3.4 Composites	5
1.3 Properties of Nanomaterials	5
1.4 Metal oxides	7
1.5 Transition metal oxides	8
1.5.1 Oxides of Cobalt	9
1.5.2 Oxides of Nickel	9
1.5.3 Oxides of Copper	10
1.6 Methods of Synthesis of nano metal oxides	10
1.6.1 Ceramic Method	10
1.6.2 Electrochemical Method	11
1.6.3 Spray Pyrolysis Method	11
1.6.4 Hydrothermal Method	11
1.6.5 Co-precipitation Method	12

1.6.6 Sol-gel Method	12
1.6.7 Thermal decomposition of precursor	13
1.6.8 Vapour Phase Method	13
1.6.9 Chimie-Douce Method	14
1.6.10 Plasma Synthesis Method	14
1.6.11 Reverse Micelle Method	14
1.6.12 CTAB Method	15
References	

Chapter II: Experimental Details

2.1 Materials	22
2.2 Characterization Techniques	
2.2.1 Fourier Transform Infrared (FT-IR) Spectroscopy	22
2.2.2 Scanning electron microscopy (SEM)	23
2.2.3 Energy dispersive analysis of X-rays (EDAX)	24
2.2.4 X-ray diffraction (XRD)	24

Chapter III : Synthesis , Characterization and Dielectric property studies of $\mathrm{Co}_3\mathrm{O}_4$

Nanoparticles

3.1 Introduction	27
3.2 Preparation of Co ₃ O ₄ nanoparticles	28
3.3 Characterization of Co ₃ O ₄ nanoparticles	28
3.3.1 IR spectral study	28
3.3.2 XRD analysis	29
3.3.3 HRTEM analysis	30
3.3.4 SEM analysis	31
3.3.5 EDX analysis	31
3.3.6 Dielectric studies	32
References	33

	-
4.1 Introduction	35
4.2 Synthesis NiO nanoparticles	35
4.3 Characterization of NiO nanoparticles	36
4.3.1 IR Spectral analysis	36
4.3.2 XRD analysis	37
4.3.3 HRTEM Analysis	38
4.3.4 SEM analysis	39
4.3.5 EDX analysis	39
4.3.6 Dielectric studies	40
References	41

Chapter IV : Synthesis, Characterization and Dielectric property studies of NiO nanoparticles

Chapter V : Synthesis, characterization and dielectric property studies of CuO nanoparticles

5.1 Introduction	42
5.2 Synthesis of CuO nanoparticles	43
5.3 Characterization of CuO nanoparticles	43
5.3.1 IR Spectral analysis	43
5.3.2 XRD analysis	44
5.3.3 HRTEM analysis	45
5.3.4 SEM analysis	46
5.3.5 EDX analysis	46
5.3.6 Dielectric studies	47
References	48

Chapter VI : Summary, conclusions