KONGUNADU ARTS AND SCIENCE COLLEGE

(AUTONOMOUS)

COIMBATORE - 641 029

DEPARTMENT OF MATHEMATICS (PG)

CURRICULUM AND SCHEME OF EXAMINATIONS (CBCS)

(2018-2019 and onwards)

KONGUNADU ARTS AND SCIENCE COLLEGE(AUTONOMOUS)

Coimbatore-641029

Vision:

Developing the total personality of every student in a holistic way by adhering to the principles of Swami Vivekananda and Mahatma Gandhi.

Mission:

Imparting holistic and man-making education with emphasis on character, culture and value - moral and ethical.

Designing the curriculum and offering courses that transform its students into value added skilled human resources.

Constantly updating academic and management practices towards total quality management and promotion of quality in all spheres.

Extending the best student support services by making them comprehensive and by evolving a curriculum relevant to student community and society at large.

Taking steps to make education affordable and accessible by extending scholarships to the meritorious and economically disadvantaged students.

Moulding the teachers in such a way that they become the role models in promoting Higher Education.

DEPARTMENT OF MATHEMATICS

Vision:

- 1. To enrich the Mathematical and Analytical skill of the student
- 2. To produce quality Mathematical science researches
- 3. To emphasis the students to apply the theoretical Mathematics to bring out as Mathematical models

Mission:

- 1. To inculcate moral values and ethical values.
- 2. To upgrade the students knowledge to meet the academic challenges.
- 3. To equip the students with the necessary mathematical tools to meet the competitive global environment.

Programme Outcome (PO)

- **PO 1:** Innovate and solve complex mathematical problems using the knowledge of Pure and Applied Mathematics.
- **PO 2:** Applying mathematical concepts and problem solving techniques to perform computations in various fields of social, scientific and economical development.
- **PO 3:** Develop a wide range of Mathematical skills and knowledge to pursue their research and compete globally.
- **PO 4:** Understand the importance of mathematics and its techniques to solve real life problems.
- **PO 5:** Ability to assess and interpret complex situations which enables them to choose successful career in Education and Industry.
- **PO 6:** Equip with deep knowledge in various areas of mathematics, being capable to be an Entrepreneur and a mathematical professional.
- **PO 7:** Expertise knowledge in the thrust areas of Mathematics to take up projects in the field of Science and Engineering.
- **PO 8:** Crack lectureship and fellowship exams approved by UGC like CSIR NET and SET.

Programme Specific Outcome (PSO)

- **PSO 1**. Remembering the higher notions of Mathematics to develop logical and creative thinking.
- **PSO 2**. Comprehend high levels of abstraction in pure and applied mathematical concepts.
- **PSO 3**. Investigate and apply mathematical tools to find solutions in a variety of context, related to real world problems.
- **PSO 4.** Exhibit a deep understanding in Mathematics, providing a strong foundation to identify the thrust areas in research.
- **PSO 5**. Deeper understanding and successful application of the subject knowledge and problem solving skills helps to clear NET/SET Examinations.

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

<u>COIMBATORE – 641 029</u>

M.Sc. MATHEMATICS

Curriculum & Scheme of Examination under CBCS

(APPLICABLE TO STUDENTS ADMITTED FROM THE ACADEMIC YEAR 2018-2019 & ONWARDS)

							amina	tion		
Semester	Subject Code/ Question	Part		Title of the Paper	tion		Mark	s	n of	Credits
Sem	Paper Code	P		11000 01 the 1 upor	Instruction Hours	CIA	ESE	Total	Duration of	Cr
	18PMA101	I	CP 1	Algebra	7	25	75	100	3	5
	18PMA102		CP 2	Real Analysis	6	25	75	100	3	5
I	18PMA103		CP 3	Ordinary Differential (Equations)	7	25	75	100	3	5
	18PMA104		CP 4	Numerical Methods	6	25	75	100	3	4
	18PMA1N1		NMEP 1	Non-Major Elective -1	4	25	75	100	3	5
				TOTAL	30			500		24
	18PMA205	I	CP 5	Complex Analysis	7	25	75	100	3	4
	18PMA206		CP 6	Partial Differential Equations	6	25	75	100	3	5
II	18PMA207		CP 7	Mechanics	6	25	75	100	3	5
11	18PMA208		CP 8	(Programming in C – Theory)	5	25	75	100	3	3
	18PMA2L		CPr 1	Programming in C – Practical	2	40	60	100	3	2
	18PMA2N2		NMEP 2	Non-Major Elective -2	4	25	75	100	3	5
				TOTAL	30			600		24

	18PMA309	I	CP 9	Topology	7	25	75	100	3	5
			02 >	(P S S S S S S S S S S S S S S S S S S)	
	18PMA310		CP 10	Functional Analysis	7	25	75	100	3	5
III	18PMA311		CP 11	Mathematical Statistics	7	25	75	100	3	5
111	18PMA3E1		MEP 1	(Major Elective Paper)	7	25	75	100	3	5
			PRO	Project	2	-	-	-	-	-
				TOTAL	30			400		20
	18PMA412	I	CP 12	Mathematical Methods	7	25	75	100	3	5
IV	18PMA413		CP 13	Control Theory	7	25	75	100	3	5
	18PMA414		CP 14	Object Oriented Programming with C++ - Theory	5	25	75	100	3	3
	18PMA4C M		C Pr 2	Object Oriented Programming with C++ - Practical	2	40	60	100	3	2
	18PMA4E2		MEP 2	Major Elective Paper	7	25	75	100	3	5
	18PMA4Z1		PRO	(Project)	2	40	160 **	200	-	2
				TOTAL	30			700		22
						Total	ı	2200		90

** Dissertation 120 Marks Viva – Voce 40 Marks

ADVANCED LEARNER'S COURSE (SELF STUDY)

18PM	IA0D1	I	ALC 1	Discrete Mathematics and Automata Theory	-	-	10 0	100	3	2
18PM	IA0D2		ALC 2	Astronomy	-	-	10 0	100	3	2
18PM	IA0D3	Optional	ALC 3	Internet and JAVA Programming	-	-	10 0	100	3	2

Major Elective Papers

(2 papers are to be chosen from the following 4 papers)

- 1. Fluid Dynamics
- 2. Advanced Operations Research
- 3. Fundamentals of Actuarial Mathematics
- 4. Cryptography

Non Major Elective Papers

(2 papers are to be chosen from the following 4 papers)

- 1. System Analyses and Design
- 2. Visual Basic and Oracle
- 3. Fuzzy Logic and Neural networks
- 4. Measure and Integration

Tally Table

Part	Subject	Total Marks	Total Credits
I	Core – Theory / Practical /	1800	70
	Project (18)		
	Major Elective Paper (2)	200	10
	Non Major Elective Paper (2)	200	10
	Grand Total (22)	2200	90
II	ALC	300	6
(Optional)	(3) (Maximum)	(Maximum)	(Maximum)

<u>Note</u>

CBCS - Choice Based Credit System, CIA - Continuous Internal Assessment,

ESE – End Semester Examination, CP - Core Paper,

NMEP - Non Major Elective Paper, CPr - Core Practical, PRO - Project

MEP - Major Elective Paper, ALC - Advanced Learner's Course

(Self study courses to earn extra credits)

25% CIA is applicable to all subjects except ALC (CIA is not applicable to ALC).

JOCs are optional for earning extra credits. JOCs are conducted within 4 hours/cycle outside college hours. A list of JOCs is given at the end.

BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN

K1-Remember; K2-Understanding; K3-Apply; K4-Analyze; K5-Evaluate

1. Theory Examination - Part I, II & III

(i) CIA I & II and ESE: 75 Marks

Knowledge Level	Section	Marks	Description	Total
K1 Q1 to 10	A (Answer all)	$10 \times 1 = 10$	MCQ	
K2 Q11 to 15	B (Either or pattern)	5 x 5 = 25	Short Answers	75
K3 & K4 Q16 to 20	C (Either or pattern)	5 x 8 = 40	Descriptive / Detailed	

2. Practical Examination

Knowledge Level	Section	Marks	Total
K3	Experiments	50	
K4		10	60
K5	Record Work	10	

3. Project Viva Voce

Knowledge Level	Section	Marks	Total
K3	Project Report	120	1.60
K4		40	160
K5	Viva voce	40	

Components of Continuous Internal Assessment

Components			Marks	Total
Theory	CIA 1	75	(75+75 = 150/10)	
	CIA 2	75	15	25
As	signment/Sem	inar	5	23
Attendance			5	
Practical	Practical CIA Practical		25	
Obs	servation Note	book	10	40
Attendance			5	
Project Review		30	40	
Regularity		10	1 40	

Programm	e Code: 02	M.Sc Mathematics				
Course Code	: 18PMA101	Core Paper 1 – Algebra				
Batch Semester		Hours / Week Total Hours		Credits		
2018-2020	I	7 105 5				

Course Objectives

- To study groups, rings, fields and linear transformations which are widely used in many research fields and the concepts of mappings are applied in the subjects like analysis and topology.
- 2. To show the needs from which a modern mathematical attitude may grow and it is of great help in any further axiomatic study of mathematics.
- 3. To study the concept of linear transformations using matrices. Also, Contemporary mathematics and mathematical physics make extensive use of abstract algebra.

Course Outcomes (CO)

K1	CO1	Remembering the concept of rings, fields and extension fields.
K2	CO2	Understanding the difference between algebraic and transcendental extensions; be able to find the minimal polynomial for algebraic elements over a field and be able to prove whether a polynomial is irreducible over a given field.
K3	CO3	Applying Sylow's theorems to determine the structure of certain groups of small order and also Gauss lemma, Eisentein criterion for irreducibility of rationals.
K4	CO4	Analyzing Galois groups in simple cases and to apply the group theoretic information to deduce results about fields and polynomials.

Syllabus

Unit I (21 Hours)

Group Theory: Another Counting Principle – Conjugacy* – Normalizer – Cauchy's Theorem - Sylow's Theorem - Direct Products.

Unit II (21 Hours)

Ring Theory: **Euclidean Rings*** – Unique Factorization Theorem - A Particular Euclidean Ring - Fermats Theorem - Polynomial Rings - Polynomials over the Rational Field - Gauss' Lemma - The Eisentein Criterion.

Unit III (20 Hours)

Fields: Extension fields - Algebraic Extension - Roots of polynomials - Remainder Theorem Splitting field.

Unit IV (22 Hours)

More about roots: Simple Extension. The Elements of Galois Theory – Fixed field of a Group - Normal Extension - The Galois group of a polynomial - Fundamental Theorem of Galois Theory.

Unit V (21 Hours)

Linear Transformations: Canonical Forms – Similar Transformation – Triangular Form – Trace and Transpose – Symmetric Matrix – Skew Symmetric Matrix - Hermitian, Unitary and Normal Transformations.

* Self Study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk / Powerpoint presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

I. N.Herstein, Topics in Algebra, 2nd Edition, Wiley Eastern Limited, 1992.

Unit I	Chapter 2	Sections 2.11 to 2.13.
Unit II	Chapter 3	Sections 3.7 to 3.10.
Unit III	Chapter 5	Sections 5.1 and 5.3.
Unit IV	Chapter 5	Sections 5.5 and 5.6.
Unit V	Chapter 6	Sections 6.4, 6.8 and 6.10.

Reference Books

- 1. John B.Fraleigh, A First Course in abstract Algebra , 3rd Edition, Narosa Publishing House, 1998.
- 2. P.B.Bhattacharya , S.K.Jain and S.R.Nagpaul , Basic abstract Algebra, 2nd Edition, Cambridge University Press, 2004.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	Н	S	M
CO2	S	Н	M	S	Н
CO3	Н	Н	S	S	Н
CO4	S	Н	S	Н	S

Programme Code: 02		M.Sc Mathematics			
Course Code	: 18PMA102	Core Paper 2 - REAL ANALYSIS			
Batch	Semester	Hours / Week Total Hours Credits			
2018-2020	I	6	90	5	

- 1. To learn about advanced topics in Riemann's Stieltjes Integrals.
- 2. To study the mean value theorem for Riemann and Riemann's Stieltjes integrals.
- 3. To study directional derivatives, total derivatives, Jacobian determinant and their applications.

Course Outcomes (CO)

K1	CO1	Remembering the upper and lower integrals and the Riemann
		conditions.
K2	CO2	Understanding the difference between necessary and sufficient
		conditions for Riemann's Stieltjes Integrals.
K3	CO3	Identifying the sufficient conditions for differentiability and mixed
		partial derivatives.
K4	CO4	Analyzing the Jacobian determinant to understand the Implicit and
		Inverse function theorems.

Syllabus

UNIT I (18 Hours)

The Riemann – Stieltjes Integral: Monotonically increasing integrators. **Upper and lower integrals*** –Additive and Linearity properties of upper and lower integrals –Riemann's condition – Comparison theorems –Integrators of bounded variation.

UNIT II (18 Hours)

Sufficient conditions for existence of Riemann - Steiltjes integrals - Necessary conditions for existence of Riemann- Steiltjes integrals - Mean value theorems for R S integrals - The integrals as a function of the interval - Second fundamental theorem of integral calculus - Change of variable in a Riemann integral - Second Mean value theorem for Riemann integral.

UNIT III (18 Hrs)

Multivariable Differential Calculus - Introduction —The directional derivative - Directional derivatives and continuity —The total derivative — The total derivative expressed in terms of partial derivatives — The matrix of a linear function - **The Jacobian Matrix*** - The chain rule.

UNIT IV (18 Hrs)

The Mean value Theorem for differentiable functions - A sufficient condition for differentiability - A sufficient condition for equality of mixed partial derivatives - Taylor's formula for functions from R^n to R^1 .

UNIT V (18 Hrs)

Implicit Functions and Extremum Problems: Introduction - Functions with nonzero Jacobian determinant – The inverse function theorem – The implicit function theorem.

* Self Study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk / Powerpoint presentation/ Seminar/Quiz/Discussion/Assignment

TEXT BOOK

1. Tom M.Apostol, Mathematical Analysis, Addition – Wesley, 1974.

Unit I	Chapter 7	Sections	7.11 to 7.15
Unit II	Chapter 7	Sections	7.16 to 7.22
Unit III	Chapter 12	Sections	12.1 to 12.5, 12.7 to 12.9
Unit IV	Chapter 12	Sections	12.11 to 12.14
Unit V	Chapter 13	Sections	13.1 to 13.4

REFERENCE BOOKS

- 1. J.V.Deshpande, Mathematical Analysis and applications An introduction, Narosa Publishing house, New Delhi, 2004.
- 2. Shanthi Narayan, A course of Mathematical Analysis, S.Chand and company,1st Edition, New Delhi, 1996.

- 3. W.Rudin, Real and Complex Analysis, McGraw-Hill company, 3rd Edition, New York, 1986.
- 4. D.Somasundaram and B.Chaudhary, A first course in Mathematical Analysis, Narosa Publishing house, New Delhi, 1999.

Mapping

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	S	M	S
CO2	S	Н	M	S	Н
CO3	Н	M	S	S	S
CO4	S	S	Н	M	Н

Programme Code: 02		M. Sc Mathematics			
Course Code:	Course Code: 18 PMA103		Core Paper 3-Ordinary Differential Equations		
Batch Semester		Hours / Week	Total Hours	Credits	
2018-2020	I	7	105	5	

- 1. To understand the concepts of fundamental matrix and successive approximation for finding solution.
- 2. To enable the students to know the concepts of non-homogeneous linear systems with constant co-efficient and periodic co-efficient.
- 3. To gain knowledge in the area of linear oscillations and non-linear oscillations.

Course Outcomes (CO)

K1	CO1	Remembering the different types of differential equations.
K2	CO2	Understanding the concept of linear oscillations and non-linear
		oscillations.
К3	CO3	Applying the notions of fundamental matrix and successive
		approximations in the system of differential equations.
K4	CO4	Analyzing the non-homogeneous linear systems with constant co-
		efficient and periodic co-efficient.

Syllabus

UNIT I (21 Hours)

Second order linear equations with ordinary points –Legendre equation and Legendre polynomials -Second order equations with regular singular points –Bessel equation.

UNIT II (21 Hours)

Systems of first order equations – Existence and uniqueness theorem - Fundamental matrix.

UNIT III (21 Hours)

Non –homogeneous linear systems –Linear systems with constant coefficients - Linear systems with periodic coefficients.

UNIT IV (21 Hours)

Successive approximations —Picard's theorem —Non-uniqueness of solutions — Continuation and dependence on initial conditions -**Existence of solutions in the large*** -Existence and uniqueness of solutions of systems.

UNIT V (21 Hours)

Fundamental results –Strum's comparison theorem –**Elementary linear Oscillations*** - Comparison theorem of Hille-Wintner Oscillations of x" + a(t)x = 0 –Elementary non-linear oscillations.

* denotes Self study

Questions for examinations may be taken from the self study portions also.

Teaching Methods

Chalk and Talk / Powerpoint presentation/ Seminar/Quiz/Discussion/Assignment

TEXT BOOK

S.G.Deo and V. Raghavendra, Ordinary Differential Equations and Stability Theory, Tata McGrew - Hill Publishing Company Ltd, New Delhi, 1993.

Unit I	Chapter 3	Sections 3.2 to 3.5
Unit II	Chapter 4	Sections 4.2 to 4.4
Unit III	Chapter 4	Sections 4.5 to 4.7
Unit IV	Chapter 5	Sections 5.3 to 5.8
Unit V	Chapter 6	Sections 6.1 to 6.6

REFERENCE BOOKS

- 1. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, 2nd Edition, Tata McGraw Hill Pvt. Ltd, New Delhi, 2002.
- 2. V.I. Arnold, Ordinary Differential Equation, Prentice Hall of India Pvt. Ltd, New Delhi, 1998.
- 3. E.L. Ince, Ordinary Differential Equations, Dover Publications, INC, New York, 1956.
- 4. Coddington, Theory of Ordinary Differential Equations, S. Chand Pvt., Ltd, 2000.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	S	S	Н
CO2	Н	Н	S	M	S
CO3	Н	S	Н	Н	Н
CO4	S	S	M	Н	S

Programm	e Code: 02	M. Sc Mathematics		
Course Code:18PMA104		Core paper 4 - NUMERICAL METHODS		
Batch	Semester	r Hours / Week Total Hours Credit		
2018-2020	I	6 90		4

Course Objectives

- 1. To solve the linear equations, non-linear equations and interpolating the values using numerical methods.
- 2. To obtain the solution of Boundary Value Problems and Characteristic Value Problems using Numerical Methods.
- 3. To find the Solution of Ordinary Differential Equations and Partial Differential Equations using Numerical methods.

Course Outcomes (CO)

K1	CO1	Remembering various numerical methods for finding the solution of		
		algebraic and transcendental equations.		
K2	CO2	Demonstrating various numerical algorithms for solving simultaneous		
		linear algebraic equations.		
K3	CO3	Applying various numerical methods to solve differential equations.		
K4	CO4	Analyzing the Boundary Value Problems and Characteristic Value		
		Problems.		

Syllabus

UNIT I (18 Hours)

Solution of Nonlinear Equations- Newton's method- Convergence of Newton's method – Bairstow Method for quadratic factors. Numerical Differentiation and Integration: Derivatives from difference tables – Higher order derivatives – Divided difference, Central – Difference formulas – Romberg integration – Simpson's rules.

UNIT II (18 Hours)

Solution of System of Equations - The Elimination method - Gauss and Gauss Jordan methods* - Matrix inversion Gauss - Jordan method - Methods of iteration - Jacobi and Gauss Seidal iteration - Relaxation method.

UNIT III (18 Hours)

Solution of Ordinary Differential Equations - Taylor series method - Euler and Modified Euler methods - Runge -Kutta methods - Multistep methods - Milne's method - Adams Moulton method.

UNIT IV (18 Hours)

Boundary Value Problems and Characteristic Value Problems - Solution through a set of equations - Derivative boundary conditions - Characteristic value problems - **Eigen values of a matrix*** by iteration - The power method.

UNIT V (18 Hours)

Numerical Solution of Partial Differential Equations - Solutions of Elliptic, Parabolic and Hyperbolic partial differential equations: Representation as a difference equation – Laplace's equation on a rectangular region – Iterative methods for Laplace equation – The Poission equation – Derivative Boundary conditions – Solving the equation for time – dependent heat flow (i) The Explicit method (ii) The Crank Nicolson method – Solving the wave equation by finite differences.

*denotes Self Study (Questions for examinations may be taken from this Portions also).

Teaching Methods

Chalk and Talk / Powerpoint presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

C.F.Gerald and P.O.Wheatley, Applied Numerical Analysis, 5th Edition, Addition Wesley, 1998.

Unit I	Chapter 1 Chapter 3	Sections 1.4, 1.8, 1.11 Section 3.3
	Chapter 4	Sections 4.2, 4.3, 4.7
Unit II	Chapter 2	Sections 2.3,2.4,2.7,2.10,2.11
Unit III	Chapter 5	Sections 5.2 to 5.7
Unit IV	Chapter 6	Sections 6.2 to 6.3, 6.6,6.7
Unit V	Chapter 7	Sections 7.3 to 7.7
	Chapter 8	Sections 8.1 to 8.3
	Chapter 9	Section 9.2

Reference Books

- 1. S.C.Chapra and P.C.Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill, New Delhi 2000.
- 2. R.L.Burden and J.Douglas Faries, Numerical Analysis, 4th Edition, PWS Kent Publishing Company, Boston 1989.
- 3. S.S.Sastry, Introductory methods of Numerical Analysis, Prentice-Hall of India, New Delhi, 1998.
- 4. P.Kandasamy et al. Numerical Methods, S.Chand & Co., Ltd., New Delhi 2003.

Mapping

PO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	M	S
CO2	S	M	M	S	Н
CO3	Н	M	S	Н	S
CO4	S	S	Н	S	Н

Programme Code: 02		M. Sc Mathematics		
Course Code	: 18PMA205	Core Paper 5 - COMPLEX ANALYSIS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	II	7	105	4

- 1. To study Cauchy's theorem and applying it for a rectangle and a disk.
- 2. To know various types of singularities and evaluation of definite integrals using residues.
- 3. To understand the concept of power series expansions and canonical products.

Course Outcomes (CO)

K1	CO1	Recalling rectifiable arcs and line integrals as functions of arcs.
K2	CO2	Explaining the concepts of Local mapping theorem, Cauchy residue
		theorem and its applications.
К3	CO3	Applying the Residue theorem on definite integrals.
K4	CO4	Analyzing the Riemann mapping theorem and Schwarz – Christoffel formula.

SYLLABUS

UNIT I (22 Hours)

Fundamental Theorems: Line Integrals – Rectifiable Arcs - Line Integrals as Functions of Arcs* – Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.

UNIT II (20 Hours)

Local Properties of Analytic Functions: Removable Singularities - Taylor's theorem – Zeros and poles – The Local Mapping – The Maximum principle.

UNIT III (20 Hours)

The Calculus of Residues: The Residue theorem – The Argument Principle – Evaluation of Definite Integrals - Harmonic functions: Definitions and Basic Properties – The Mean - value Property – Poisson's formula.

UNIT IV (21 Hours)

Power Series Expansions: Weierstrass's Theorem – The Taylor Series – The Laurent Series - Partial fractions and Factorization: Partial Fractions – Infinite Products.

UNIT V (21 Hours)

Canonical Products – The Riemann Mapping theorem : Statement and Proof - The Schwarz – Christoffel Formula – A closer look at harmonic functions: Functions with Mean -value Property - Harnack's Principle.

Teaching Methods

Chalk and Talk / Powerpoint presentation/ Seminar/Quiz/Discussion/Assignment

TEXT BOOK

1.L.V.Ahlfors, Complex Analysis, McGraw Hill, New York, 1979.

Unit I	Chapter 4	Sections 1.1 – 1.5
	Chapter 4	Sections $2.1 - 2.3$.
Unit II	Chapter 4	Sections $3.1 - 3.4$
Unit III	Chapter 4	Sections $5.1 - 5.3$, $6.1 - 6.3$
Unit IV	Chapter 5	Sections 1.1 – 1.3, 2.1, 2.2
Unit V	Chapter 5	Section 2.3
	Chapter 6	Sections 1.1, 2.2, 3.1, 3.2.

REFERENCE BOOKS

- Walter Rudin, Real and Complex Analysis, Tata McGraw Hill Publishing Co.Ltd., New Delhi, 1999.
- 2. John B.Conway, Functions of one Complex Variable , 2nd Edition, Narosa Publishing House, New Delhi, 2002.
- 3. S.Ponnusamy, Foundations of Complex Analysis, 2nd Edition, Narosa Publishing House, New Delhi, 2005.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	S	M	S
CO2	S	Н	M	S	Н
CO3	Н	M	S	S	S
CO4	S	S	Н	M	Н

Programme Code: 02		M.Sc Mathematics			
Course Code: 18PMA206		Core Paper 6 - Partial Differential Equations			
Batch	Semester	Hours / Week	Total Hours	Credits	
2018-2020	II	6	90	5	

- 1. To study linear partial differential equations and non-linear partial differential equations.
- 2. To know the concept of partial differential equations and their role in modern mathematics.
- 3. To understand the concepts of wave equations and diffusion equations.

Course Outcomes (CO)

K1	CO1	Finding the solutions of the heat equation, wave equation and the
		Laplace equation subject to boundary conditions
K2	CO2	Understanding the method of separation of variables and the method
		of integral transforms.
К3	CO3	Applying calculus of variations in finding elementary solutions of
		diffusion equations.
K4	CO4	Analyzing the solutions of non-linear partial differential equations by
		using Charpit's and Jacobi's methods.

Syllabus

Unit I (18 Hours)

Non-linear partial differential equations of the first order compatible systems of first order equations- Charpit's Method - **Special types of first order equations*** and Jacobi's Method.

Unit II (18 Hours)

Linear partial differential equations with constant co-efficient and Equations with variable Co-efficients.

Unit III (18 Hours)

Method of separation of variables and the Method of Integral Transforms.

Unit IV (18 Hours)

Elementary solutions of Laplace equations- Families of equi-potential surface-Boundary value problems –Separation of Variables and problems with axial symmetry.

Unit V (18 Hours)

Elementary solutions of one dimensional wave equations – Vibrating Membranes:

Applications of Calculus of variations – Elementary solutions of Diffusion equations and Separation of variables.

* Self Study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk / Powerpoint presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

Ian N. Sneddon, Elements of Partial Differential Equations, Dover Publications, INC-New York, 2006.

Unit I	Chapter 2	Sections 7, $9 - 11$, 13
Unit II	Chapter 3	Sections 4, 5
Unit III	Chapter 3	Sections 9, 10
Unit IV	Chapter 4	Sections 2 - 6
Unit V	Chapter 5	Sections 2, 4
	Chapter 6	Sections 3, 4

Reference Books

- 1. Michael Renardy and Robert C. Rogers, An Introduction to Partial Differential Equations, Second Edition, Springer, 2004.
- 2. Robert C. Mc Owen, Partial Differential Equations, Methods and Applications, Second Edition, Pearson Education, Inc., 2004.
- 3. T.Amarnath, An Elementary Course in Partial Differential Equations, Narosa Publishing House, New Delhi, Reprint 2004.
- 4. Tyn Myint.U, Loknath and Debnath, Linear Partial Differential Equations for Scientists and Engineers, Brikhauser Boston, Fourth edition, 2006.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	S	M	Н	Н
CO2	Н	S	Н	M	Н
CO3	M	S	Н	S	Н
CO4	S	Н	Н	S	Н

Programme Code: 02		M. Sc Mathematics		
Course Code	e: 18PMA207	Core Paper 7- MECHANICS		NICS
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	II	6	90	5

- 1. To know the basic concepts of the Mechanical system.
- 2. To understand about the constraints, differential forms and Generating functions
- 3. To acquire knowledge about mechanical concepts to solve various problems in Mechanics.

Course Outcomes (CO)

K1	CO1	Remembering the concepts of generalized co-ordinates and constraints.
K2	CO2	Explaining the derivation of Lagrange's and Hamilton equations.
K3	CO3	Applying Hamilton Principle for deriving Hamilton Jacobi Equation.
K4	CO4	Analyzing the Lagrange's and Poisson Brackets.

SYLLABUS

UNIT I

Introductory concepts: Mechanical Systems –Generalized Co-ordinates – Constraints -Virtual work.

UNIT II

Lagrange's Equations: Derivation of LaGrange's Equations –**Examples*** –Integrals of

motion.

UNIT III

Hamilton's Equations: Hamilton's Principle – Hamilton's equations.

UNIT IV

Hamilton – Jacobi Theory: Hamilton's Principle function – Hamilton – Jacobi equation –

Separability*.

UNIT V

Canonical Transformations: Differential forms and Generating functions –Lagrange and Poisson Brackets.

* Self Study (Questions may be asked from these portions also) Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

D.T.Greenwood, Classical Dynamics, Prentice Hall of India pvt. ltd., New Delhi, 1979.

Unit I	Chapter 1	1.1 - 1.4
Unit II Unit III	Chapter 2 Chapter 4	2.1 - 2.3 $4.1 - 4.2$
Unit IV Unit V	Chapter 5 Chapter 6	5.1 – 5.3 6.1 and 6.3

Reference Books

- 1. John.L. Synge and Byron.A. Griffth, Principles of Mechanics, 3rd Edition, Mcgrow Hill Kogakygha Ltd, 1970.
- 2. Goldstin, Classical Mechanics, Prentice Hall of India, New Delhi, 1979.
- 3. Sankara Rao.K, Classical Mechanics, K.K. Publications Prentice Hall of India and the Parkar, 2005.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	M	Н	S	M
CO2	M	Н	S	M	Н
CO3	S	M	M	Н	S
CO4	Н	S	M	Н	M

Programme Code: 02		M. Sc Mathematics		
Course Code: 18PMA208		Core Paper 8-Programming in C – Theory		C – Theory
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	II	5	75	3

- 1. To understand the logical structure of a C program and to develop different programs in 'C' language.
- 2. To know the concepts of Arrays and Pointers.
- 3. To understand the File management in C.

Course Outcomes (CO)

K1	CO1	Remembering the structure of program development in C.
K2	CO2	Understanding the use of decision making and looping.
К3	CO3	Applying the concepts of Arrays in different programs.
K4	CO4	Examining the complexity of problems, modularize the problems into
		small modules and then convert them into programs.

Syllabus

UNIT I (15 Hours)

Decision Making and Branching: Introduction - Decision Making with IF Statement - Simple IF Statement - The IF-ELSE Statement - Nesting of IF... ELSE Statements - The ELSE IF Ladder - The Switch Statement, The?: Operator - The GOTO Statement.

Decision Making and Looping: Introduction - The WHILE Statement - The DO Statement - The FOR Statement - Jumps in LOOPS.

UNIT II (15 Hours)

Arrays: Introduction - One-dimensional Arrays - Declaration of One - dimensional Arrays - Initialization of One - dimensional Arrays - *Two-dimensional Arrays - Initializing Two - dimensional Arrays - Multi - dimensional Arrays.

Character Arrays and Strings: Introduction – Declaring and Initializing String Variables - Reading Strings from Terminal - Writing Strings to Screen - Arithmetic Operations on Characters - Putting Strings Together - Comparison of Two Strings - String – handling Functions - Table of Strings.

UNIT III (15 Hours)

User defined functions: Introduction - Need for User Defined Functions - A Multi - function Program - Elements of User defined Functions - Definition of Functions - Return Values and their Types - Function Calls - Functions Declaration - Category of Functions - No Arguments and no return values - Arguments but no Return Values - Arguments with Return Values - No Arguments

but Returns a Value – Functions that return multiple values – Nesting of Functions – Recursion – Passing arrays to functions – Passing Strings to functions – The Scope, Visibility and life time of variables

UNIT IV (15 Hours)

Structures and Unions: Introduction - Defining a Structure - Declaring Structure Variables - Accessing Structure Members - Structure Initialization - Copying and Comparing Structure Variables - Operations on Individual Members - Arrays of Structures - Arrays within Structures - Structures within Structures - Structures and Functions - Unions - Size of Structures.

Pointers: Introduction - Understanding Pointers - Accessing the Address of a Variable - Declaring Pointer Variables - Initialization of Pointers Variables - Accessing a Variable through its Pointer - Chain of Pointers - Pointer Expressions.

UNIT V (15 Hours)

File Management: Introduction – defining and opening a file – closing a file – Input/Output operations on files – Error Handling during I/O operations – Random access to files – Command line arguments

Dynamic Memory Allocation and Linked Lists: Introduction – Dynamic Memory Allocation – Allocating a block of memory: Malloc – Allocating multiple blocks of memory: Calloc – Releasing the used space: free – Altering the size of a block: Realloc – Concepts of linked lists – Advantages of Linked Lists – Types of a Linked Lists – Pointers revisited – Creating a linked Lists – Inserting a Item – Deleting an item.

Teaching Methods

Chalk and Talk / Powerpoint presentation/ Seminar/Quiz/Discussion/Assignment

Text Book:

E.Balagurusamy, Programming in ANSI C, Sixth Edition, 2013, Tata Mc - Graw Hill Education Private Limited, New Delhi 110008.

Unit I	Sections	5.1 to 5.09 and 6.1 to 6.5
Unit II	Sections	7.1 to 7.7 and 8.1 to 8.9
Unit III	Sections	9.1 to 9.19
Unit IV	Sections	10.1 to 10.13 and 11.1 to 11.08
Unit V	Sections	12.1 to 12.7 and 13.1 to 13.13

Reference Books

- 1. Kancthkar Yash Want, Let us C Solution, BP House, Publications, New Delhi, 2002.
- 2. James, Art of C Programming, Narosa Publication, New Delhi, 1998.
- 3. S. K. Pundir and B. Singh, Numerical Analysis and Programming in C, Pragati Prakashan Educational Publishers, Meerut, 2014.

^{*} denotes Self study(Questions may be taken from these portions also).

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	Н	S	M
CO2	Н	Н	S	M	Н
CO3	M	S	Н	Н	Н
CO4	Н	Н	Н	S	S

Programme Code: 02		M. Sc Mathematics		
Course Code:	18PMA2CL			
		Core Practical 1-Programming in C - Practical		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	II	2	30	2

- 1. To find the solutions of non-linear ordinary differential equations using C programs.
- 2. To get practical experience of the programs in Matrix manipulations and Dynamic memory allocations.
- 3. To enhance the students to develop the program writing skills for mathematical problems

Course Outcomes (CO)

K3	CO1	Utilizing C program for finding the Numerical solutions of Algebraic	
		and Transcendental Equations.	
K4	CO2	Analyzing the programs involving loops and functions.	
K5	CO3	Applying, compiling and debugging programs in C language.	

List of Practical

1. Program to find the Numerical Solution of Algebraic and Transcendental Equations by				
i) Bisection Method				
ii) Regular Falsi Method				
iii) Newton - Raphson Method	6 Hours			
2. Program to find				
i) Multiplication of two Matrices				
ii) Determinant of a Matrix				
iii) Inverse of a matrix by Gauss Jordan method	6 Hours			
3. Program to solve an ODE by				
i) Euler's Method				
ii) Fourth order Runge - Kutta Method	4 Hours			
4. Program to find the value of an integral by				
i) Trapezoidal rule				
ii) Simpson's 1/3 rule				
iii) Simpson's 3/8 rule	6 Hours			
5. Program to solve the simultaneous equations by				
i) Gauss Elimination Method				

6 Hours

ii) Gauss Seidel Method

- 6. Program to receive a file name and a line of text as command line arguments and write the text to the file 1 Hour
- 7. Program that uses a table of integers whose size will be specified interactively at run time.

1 Hour

Distribution of Marks in ESE

CIA

Experiment	: 50	CIA Practical Exam	:	25
Record	: 10	Attendance	:	5
		Observation Note	:	10

Total 60 Book

To be awarded jointly by the internal and external Total 40

examiners

* denotes Self study

Questions for examinations may be taken from the self study portions also.

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	Н	Н	S
CO2	M	S	Н	Н	S
CO3	Н	S	S	S	M

Programme Code: 02		M. Sc Mathematics		
Course Code: 18PMA309		Core Paper 9 TOPOLOGY		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	III	7	105	5

- 1. To get basic knowledge in topology and topological spaces.
- 2. To study the concepts of Compactness and Connectedness.
- 3. To know the concept of countability axioms.

Course Outcomes (CO)

K1	CO1	Recalling the concept of Basis for a topology.			
K2	CO2	Classifying the ideas of product topology and metric topology.			
K3	CO3	Applying countability and separation axioms in proving Urysohn			
		lemma and Urysohn Metrization theorem.			
K4	CO4	Analyzing the concepts of limit point compactness and local			
		compactness.			

Syllabus

UNIT I (18 Hours)

Topological Spaces – **Basis for a topology*** – The order topology – The product topology on $X \times Y$ – Closed sets and Limit Points.

UNIT II (18 Hours)

Continuous functions - The product topology – The metric topology.

UNIT III (24 Hours)

Connected spaces* – Connected subspaces of the real line – Components and Local Connectedness.

UNIT IV (24Hours)

Compact Spaces – Compact subspaces of the real line - Limit Point Compactness- Local compactness.

UNIT V (21 Hours)

The countability axioms – The separation axioms – The Urysohn Lemma – Urysohn Metrization Theorem.

* denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

James R.Munkers, Topology, Second Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2003.

Unit I	Chapter 2	Sections 12 to 15, 17
Unit II	Chapter 2	Sections 18, 19, 20
Unit III	Chapter 3	Sections 23,24,25
Unit IV	Chapter 3	Sections 26,27,28,29
Unit V	Chapter 4	Sections 30,31,33

Reference Books

- 1. J.Dugundji, Allyn and Bacon, Topology, Prentice Hall of India Pvt. Ltd, New Delhi 1966.
- 2. George F.Simmons, Introduction to Topology and Modern Analysis, McGraw Hill Book Company, 1963.
- 3. Sze-Tsen Hu, Elements of General Topology, Holden Day, Inc. 1965.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	Н	Н	Н	M
CO2	S	M	S	M	Н
CO3	M	S	Н	Н	Н
CO4	Н	S	S	S	S

Programm	e Code: 02	M. Sc Mathematics		
Course Code: 18PMA310		Core Paper 10 FUNCTIONAL ANALYSIS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	III	7	105	5

- 1. To know the concepts of Normed linear spaces, Banach spaces and Hilbert spaces.
- 2. To understand the ideas of Uniform boundedness principles, closed graph theorem and Open mapping theorem.
- 3. To comprehend the notions of spectral radius, the spectral theorem and Operators on Hilbert spaces.

Course Outcomes (CO)

K1	CO1	Remembering the concepts of semi norms and Quotient spaces.
K2	CO2	Understanding the ideas of Uniform boundedness principles.
К3	CO3	Applying the concepts of eigen spectrum on normed linear spaces and
		spectral radius on Banach spaces.
K4	CO4	Analyzing the results of Adjoint, Self-Adjoint, Normal and Unitary
		Operators defined on Hilbert spaces.

Syllabus

UNIT I (21 Hours)

Normed Linear spaces: Norm on a Linear Space – Examples of Normed Linear Spaces(Cauchy-Schwarz inequality in K^n , Holder's inequality in F(N,K), Minkowski's inequality in F(N,K) only). **Semi norms and Quotient Spaces** *– Product Space and Graph Norm – Inner product spaces – Banach Spaces.

UNIT II (21 Hours)

Operators on Normed Linear Spaces: Bounded operators – Some basic results and Examples(excluding Fredholm integral operator, Lagrange interpolatory projection) – Norm on B(X,Y)_(Definitions only)- Riesz representation theorem. More about Hilbert Spaces: Orthonormal Sets and Orthonormal Bases – Bessel's Inequality. Hahn Banach Theorem and its Consequences: The Extension Theorem.

UNIT III (21 Hours)

Uniform Boundedness Principle: The Theorem and its Consequences—Closed Graph theorem and its Consequences: `Closed Graph theorem — Bounded Inverse Theorem — Open Mapping Theorem.

UNIT IV (21 Hours)

Spectral Results for Banach Space Operators : Eigenspectrum and Approximate Eigenspectrum (Definitions and theorem statement only) – Spectrum and Resolvent set – Spectral Radius - Spectral Mapping Theorem.

UNIT V (21 Hours)

Operators on Hilbert Spaces: Adjoint of an Operator(Definitions and theorem statements only) – Compactness of the Adjoint Operator - Sesqilinear Functionals - Self-Adjoint, Normal and Unitary Operators – Numerical range and Numerical Radius – Some Characterizations.

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

M. Thamban Nair, Functional Analysis – A First Course, Prentice Hall of India Pvt. Ltd., New Delhi, 2010.

Unit I	Chapter 2	Sections 2.1, 2.1.1, 2.1.2, 2.1.4, 2.1.5.
		Sections 2.2,
Unit II	Chapter 3	Section 3.1, 3.1.1, 3.3.
	Chapter 4	Sections 4.1, 4.2.
	Chapter 5	Section 5.1.
Unit III	Chapter 6	Section 6.1.
	Chapter 7	Sections 7.1, 7.2, 7.3.
Unit IV	Chapter 10	Sections 10.1, 10.2, 10.2.1, 10.2.2.
Unit V	Chapter 11	Sections 11.1, 11.1.1, 11.1.2.
		Sections 11.2, 11.2.1, 11.2.2.

^{*} denotes Self study(Questions may be taken from these portions also).

Reference Books

- C.Goffman and G.Pedrick, A First Course in Functional Analysis, Prentice Hill of India, New Delhi, 1987.
- 2. G.Bachman and L.Narici, Functional Analysis, Academic Press, New York 1966.
- 3. L.A.Lustenik and V.J.Sobolev, Elements of Functional Analysis, Hindustan Publishing Corporation, New Delhi, 1971.
- 4. A.E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	Н	S	S
CO4	S	S	S	S	S

Programme	Code : 02	M. Sc Mathematics			
Course Code:	18PMA311	Core Paper 11 MATHEMATICAL STATISTICS			
Batch 2018-2020	Semester III	Hours / Week Total Hours Credits 7 105 5			

- 1. To study the concepts of random variables and different types of distributions.
- 2. To determine the moments of the distribution function by using the characteristic functions.
- 3. To understand the Methods of finding estimates, Sample moments and their functions

Course Outcomes (CO)

K1	CO1	Remembering the random events and random variables of different
		distributions.
K2	CO2	Classifying the properties of characteristic functions of various
		distributions.
K3	CO3	Identifying the types of estimates for various probability distribution
		functions.
K4	CO4	Analyzing the functions by using various significance tests.

Syllabus

UNIT I (21 Hours)

Random Events: Preliminary remarks – **random events and operations performed on them*** – the system of axioms of the theory of probability – conditional probability – Bayes theorem
– Independent Events – Random variables: the concept of a random variable – the distribution
function – Random variables of the discrete type and the continuous type – functions of random
variables – Multidimensional random variables – Marginal distributions – conditional distributions –
Independent random variables – Parameters of the distribution of a random variable - Expected
values – Moments – The Chebyshev inequality – Absolute moments.

UNIT II (21 Hours)

Characteristic functions: **Properties of characteristic functions*** – The characteristic function and moments – Semi - Invariants – The characteristic function of the sum of independent random variables – Determination of the distribution function by the characteristic function – The characteristic function of multidimensional random vectors – Probability generating functions –

Some probability distributions: One point and two point distributions – The Bernoulli scheme: The binomial distribution – The Poisson distribution.

UNIT III (21 Hours)

Some probability distributions – The uniform distribution – The normal distribution – the gamma distribution – The beta distribution – The Cauchy and Laplace distributions – Limit theorems : Preliminary remarks – Stochastic convergence – Bernoulli's law of large numbers – The convergence of a sequence of distribution functions – The Levy - Cramer theorem – The de Moivre Laplace theorem – The Lindeberg – Levy theorem.

UNIT IV (21 Hours)

The theory of Estimation: Preliminary notions – Consistent estimates – Unbiased estimates – The sufficiency of an estimate – The efficiency of an estimate – Asymptotically most efficient estimates – Methods of finding estimates (Method of moments and the method of maximum likelihood estimates only).

UNIT V (21 Hours)

Sample moments and their functions: The notion of a sample – The notion of a statistic – The distribution of the arithmetic mean of independent normally distributed random variables – The χ^2 distribution – Student's t- Distribution – Fisher's Z-distribution – Significance tests: The concept of a statistical test – Parametric tests for small samples – The χ^2 test – Independence tests by contingency tables.

* denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

Marek Fisz, Probability theory and Mathematical Statistics, John Wiley & Sons, Inc, USA, 1980.

Unit I	Chapter 1	1.1 to 1.3, 1.5 to 1.7
	Chapter 2	2.1 to 2.8
	Chapter 3	3.1 to 3.4
Unit II	Chapter 4	4.1 to 4.7
	Chapter 5	5.1, 5.2 and 5.5
Unit III	Chapter 5	5.6 to 5.10
	Chapter 6	6.1 to 6.4, 6.6 to 6.8
Unit IV	Chapter 13	13.1 to 13.7
Unit V	Chapter 9	9.1 to 9.4, 9.6 and 9.7
	Chapter 12	12.1, 12.2, 12.4 and 12.7

References

- 1. Sheldon M. Ross, Introduction to Probability Models , 8^{th} Edition , Academic Press, USA, 2006.
- 2. S.K.Gupta and V.K.Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand and Sons, New Delhi, 2006.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	Н	S	M
CO2	Н	Н	S	M	Н
CO3	M	S	Н	Н	Н
CO4	Н	Н	Н	S	S

Programme	Code : 02	M. Sc Mathematics		
Course Code:	18PMA412	Core Paper 12 MATHEMATICAL METHODS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	IV	7	105	5

- 1. To study the concept of Fourier transforms.
- 2. To impart analytical ability in solving variational problems and integral equations.
- 3. To use calculus of variation to find the extremum of a functional.

Course Outcomes (CO)

K1	CO1	Finding the solution of Fredholm and Volterra Integral equations.
K2	CO2	Explaining the method to reduce the differential equations to Integral
		equations.
К3	CO3	Solving Maximum or minimum of a functional using Calculus of
		Variation Techniques.
K4	CO4	Analyzing the Euler's finite difference method, the Ritz method and
		Kantorovich's method.

Syllabus

UNIT I (21 Hours)

Fourier Transforms: **Fourier sine and cosine transforms*** – Fourier transforms of derivatives – The Calculation of the Fourier transforms of some simple functions – The convolution integral – Parseval's theorem for cosine and sine transforms – the solution of PDEs by means of Fourier transforms – Laplace's equation in a half plane, infinite strip, semi infinite strip – Solutions of the Diffusion equation - the linear diffusion equation on a semi - infinite line – the two-dimensional diffusion equation.

UNIT II (21 Hours)

Introduction: Integral equations with separable kernels- Reduction to system of algebraic equations, Fredholm alternative – an approximate method, Fredholm integral equations of the first kind, method of successive approximations – Iterative scheme, Volterra integral equation, some results about the resolvent kernel, classical Fredholm theory- Fredholm's method of solution-Fredholm's first, second, third theorems.

UNIT III (16 Hours)

Application to ordinary differential equation – Initial value problem – boundary value problem s– singular integral equation – Abel integral equation.

UNIT IV (19 Hours)

Calculus of Variations- Variation and its properties – Euler's equation – **functionals of the** form $\int_{x_0}^{x_1} F(x, y_1, y_2,, y_n, y_1', y_2',, y_n') dx * – functional dependent on higher order derivatives – functionals dependent on the functions of several independent variables – variational problems in parametric form –some applications.$

UNIT V (18 Hours)

Direct Methods- Euler's finite difference method- the Ritz method – Kantorovich's method.

* denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Books

1. Ian. N.Sneddon, The use of integral Transforms, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 1979. (For unit I only)

2. Ram. P.Kanwal, Linear equations theory and technique, Academic Press, New York & London, 1971. (For units II and III)

Unit II Chapter 1 to Chapter 4

Unit III Chapter 5 Sections 5.1 - 5.2Chapter 8 Sections 8.1 - 8.2

3. L.Elsgolts, Differential equations and the calculus of variations, MIR Publishers, Moscow, 1980. (For unit IV and V)

Unit IV Chapter 6 Sections 6.1- 6.7

Unit V Chapter 10 Sections 10.1- 10.4

Reference Books

- Merle C Potter and Jack Goldberg, Mathematical Methods, 2nd Edition, Prentice Hall of India (P) Ltd, New Delhi, 2000.
- C.Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991
- 3. R.Weinstock, Calculus of Variations with Applications to Physics and Engineering, McGraw-Hill Book Co., Inc., New York, 1952.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	M	Н	S	M
CO2	Н	Н	S	M	Н
CO3	Н	S	Н	Н	Н
CO4	Н	Н	Н	S	S

Programm	e Code: 02	M. Sc Mathematics		
Course Code:18PMA413		Core Paper 13 CONTROL THEORY		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	IV	7	105	5

Course Objectives

- 1. To know the basic results of Differential Equations and Fixed Point Methods.
- 2. To study the basics of observability, controllability, stability, stability, optimal Control of linear and nonlinear system.
- 3. To develop skills to review research papers in the field of Controllability Problems.

Course Outcomes (CO)

K1	CO1	Choosing ordinary differential equations through state-space representations towards analyzing and designing dynamical systems.
K2	CO2	Understanding mathematical techniques to formulate and solve control theory problems.
К3	CO3	Solving the stability of the given linear and nonlinear system using matrix theory.
K4	CO4	Analyzing various optimal control formulations and necessary conditions of optimal control.

Syllabus

Unit I (21 Hours)

Motivation – **Basic Results of Differential Equations*** – Fixed point Methods – Observability of Linear systems – Non linear systems.

Unit II (21 Hours)

Controllability of Linear systems – Non linear systems.

Unit III (21 Hours)

Stability of Linear systems – Perturbed Linear systems – Non linear systems.

Unit IV (21 Hours)

Stabilizability - Stabilization Via linear feedback control* - The controllable

Subspace – Stabilization with Restricted Feedback.

Unit V (21 Hours)

Optional Control – Linear Time varying systems – Time Invariant systems – Non linear systems.

* denotes self study (Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

1. K. Balachandran and J. P. Daur, Elements of Control Theory, Narosa Publishing House, New Delhi, 2nd Edition 2012.

```
Unit I Chapter 1 Sections 1.1, 1.2, 1.3
Chapter 2 Sections 2.1, 2.2
Unit II Chapter 3 Sections 3.1, 3.2
Unit III Chapter 4 Sections 4.1, 4.2, 4.3
Unit IV Chapter 5 Sections 5.1, 5.2, 5.3
Unit V Chapter 6 Sections 6.1, 6.2, 6.3
```

Reference Books

- 1. K.Balachandran and J.P.Daur, Elements of Control Theory, Narosa Publishing House, New Delhi, 1st Edition 1999.
- 2. Gass.S, Control system theory and Applications, Pearson Education Ltd, Bangalore, 2007.
- 3. H. Hermes and J.P.Lasalle, Functional Analysis and Time Optimal Control, Academic Press, New York, 1969.
- 4. R.E.Kalman, P.L.Falb and M.A. Arbib, Topics in Mathematical Systems Theory, McGraw Hill, New York, 1969.
- 5. D.L. Russell, Mathematics of Finite Dimensional Control Systems, Marcel Dekker, New York, 1979.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	Н	S	M
CO2	Н	Н	S	M	Н
CO3	M	S	Н	Н	Н
CO4	Н	Н	Н	S	S

Programme Code: 02		M. Sc Mathematics		
		Core Paper 14 OBJECT ORIENTED		
		PROGRAMMING WITH C++ - THEORY		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	IV	5	75	3

Course Objectives

- 1. To enable the students to learn about the basic concepts of Object Oriented Programming Techniques, class structure, operators, functions in C++ and operators Overloading and Type Conversions.
- 2. To know the differences between object oriented programming and procedure oriented programming.
- 3. To apply object oriented techniques to solve the computing Problems.

Course Outcomes (CO)

K1	CO1	Finding solutions for problems in Mathematics, Engineering, Science		
101		and Technology using Object Oriented Programming.		
K2	CO2	Classifying secured and unsecured data processing by applying		
K2		Abstraction, Encapsulation and Information hiding.		
К3	CO3	Constructing programmes using C++ features such as composition of		
K3		objects, Inheritance and Polymorphism.		
K4	CO4	Analyzing the concepts of Object Oriented Programming to solve real		
N4		world problems.		

Syllabus

UNIT I (15 Hours)

Principles of Object- Oriented Programming

Software crisis – Software evolution – A look at procedure-oriented programming – Object oriented programming paradigm – Basic concept of Object -oriented programming – Benefits of OOP – Object Oriented Languages – **Applications of OOP *.**

UNIT II (15 Hours)

Tokens, Expressions and Control Structures

Introduction – **Tokens – Keywords*** – Identifiers and constants – Basic data types – User Defined data types – Derived data types – Symbolic constants – Type compatibility – Declaration of variables – Dynamic initialization of variables – Reference variables – Operators

in C++ - Scope resolution operator – Member Dereferencing operators - Memory management operators – Manipulators – Type cast operator – Expressions and their Types – Special assignment expressions – Implicit conversions – Operator overloading – Operator precedence – Control structures.

UNIT III (15 Hours)

Functions in C++

Introduction – The main function – Function prototyping – Call by reference – Return by reference- Inline functions – Default arguments – Constant arguments – Function overloading – Friend and virtual functions – Math Library functions. **Managing Console I/O operations**Introduction – C++ streams – C++ stream classes – Unformatted I/O operations – Formatted Console I/O operations – Managing Output with Manipulators.

UNIT IV (15 Hours)

Classes and Objects

Introduction – C structures revisited – Specifying a class – Defining member functions – A C++ program with class – Making an outside function inline – Nesting of member functions – Private member functions – Arrays within a class – Memory allocation for objects – Static data members – Static member functions – Arrays of objects – Objects as function arguments – Friendly functions – Returning objects – Constant member functions.

Constructors and Destructors

Introduction – Constructors – Parameterized Constructors – Multiple constructors in a class – Constructors with default arguments – Dynamic initializations of objects – Copy constructor – Constructing two- dimensional arrays – Constant objects – Destructors.

UNIT V (15 Hours)

Operators Overloading and Type Conversions

Introductions – Defining operator overloading – Overloading unary operators – Overloading Binary operators – Overloading Binary operators using friends – Manipulation of strings using operators – Rules of overloading operators. **Inheritance: Extending Classes**

Introduction – Defining Derived Classes – Single inheritance – Making a Private member inheritable – Multilevel inheritance – Multiple inheritance – Hierarchical inheritance – Hybrid inheritance – Virtual Base Classes – Abstract Classes – Constructors in Derived Classes – Member Classes – Nesting of Classes.

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

E. Balaguruswamy, Object Oriented Programming with C++, Tata McGraw Hill Publishing Company Ltd, 1999.

Unit I	Sections 1.1 to 1.8
Unit II	Sections 3.1 to 3.24
Unit III	Sections 4.1 to 4.11 & 10.1 to 10.6
Unit IV	Sections 5.1 to 5.17 & 6.1 to 6.7, 6.9 to 6.11
Unit V	Sections 7.1 to 7.7 & 8.1 to 8.12

Reference Books

- 1.Ashok N.Kamthane, Object Oriented Programming with ANSI and TURBO C++, Pearson Education (P) Ltd, 2003.
- 2. Bjarme Stroustrup, The C++ Programming Language, AT & T Labs, Murray Hill, New Jersey, 1998.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	S	Н	S
CO2	Н	S	Н	M	Н
CO3	S	Н	S	S	S
CO4	M	S	M	Н	M

^{*}denotes Self study (Questions may be taken from these portions also).

18PMA4CM

Programme Code: 02		M. Sc Mathematics			
Course Code:18PMA4CM		Core Practical 2 OBJECT ORIENTED			
			PROGRAMMING WITH C++ - PRACTICAL		
Batch	Semester	Hours / Week	Total Hours	Credits	
2018-2020	IV	2	30	2	

Course Objectives

- 1. To identify and formulate the techniques of software development using Object Oriented Programming concepts.
- 2. To find the solution of complex problems spanning the breadth of the C++ Programming language.
- 3. To write programs for problems in various domains like Mathematics, Science, Technology and real world problems.

Course Outcomes (CO)

К3	CO1	Applying the concepts of Object Oriented Program for building object based applications.
K4	CO2	Analyzing different logic with suitable validations for a given problem.
K5	CO3	Interpret and design the Exception Handling Techniques for resolving run-time errors using file I/O.

LIST OF PRACTICAL

OBJECT AND CLASSES

- 1. Create a class ARITH which consists of a FLOAT and an INTEGER variable. Write member functions ADD (), SUB () , MUL () , DIV (), MOD () to perform addition, subtraction , multiplication, division and modulus respectively. Write member functions to get and display values.
- 2. Create a class metre with member functions take () and show () to convert metres into kilometres and centimetres and show the results.

CONSTRUCTORS AND DESTRUCTORS

3. Create a class complex with float variables. Add two complex values using overloaded constructors.

4 hrs

OPERATOR OVERLOADING

- 4. Create a class MAT has a 2 D matrix and R& C represent the rows and columns of the matrix. Overload the operators + , , * to add , subtract and multiply two matrices. Write member functions to get and display MAT object values.
- 5. Create a class STRING. Write member functions to initialize, get and display strings.

 Overload the operator + to concatenate two strings , = = to compare 2 strings and a member functions to find the length of the string.

INHERITANCE

- 6. Create a class which consists of EMPLOYEE detail like eno, ename, dept, basic salary, grade. Write member functions to get and display them. Derive the class PAY from the above class and write a member function to calculate da, hra, pf, depending on the grade and display the Payslip in a neat format using console I/O.
- 7. Create a class SHAPE which consists of two VIRTUAL FUNCTIONS Cal _ Area () and Cal _ Peri to calculate Area and perimeter of various figures. Derive three classes SQUARE, RECTANGLE and TRIANGLE from the class SHAPE and calculate Area and perimeter of each class separately and display the results*.
- 8. Create two classes which consists of two private variables, one integer and one float variable in each class. Write member functions to get and display them. Write a FRIEND function common to arguments and the integer and float values of both the objects separately and display the results.8 hrs

CONSOLE I/O

- 9. Write a user defined function USERFUN () which has the formatting commands like setw (), showpoint, showpos, precision (). Write a program which prints a multiplication table and uses USERFUN () for formatting.
- 10. Write a program to read the name, number, meter reading, consumed units and print out the same and the total bill amount* .4 hrs

18PMA4CM

Distribution of Marks in ESE

<u>CIA</u>

Experiment : 50

CIA Practical :

Record : 10

Exam

Attendance

: 5

Total 60

Observation Note :

10

25

Book

Total 40

To be awarded jointly by the internal and external examiners

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	Н	S	M	S
CO2	Н	S	Н	S	M
CO3	M	S	M	M	S

18PMA4Z1

Programme Code: 02	M. Sc Mathematics
Course code: 18PMA4Z1	Project
Batch 2018-2020	Credits :2

Course Objectives

- 1. To study the basic concepts related to the Project work.
- 2. To know the respective research fields.
- 3. To know the concept of writing a dissertation in an effective way.

Course Outcomes (CO)

К3	CO1	Applying the relative notions in the respective areas and finding the results.
K4	CO2	Analyzing results with the existing results.
K5	CO3	Interpreting the results with suitable examples.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	S	Н	Н
CO2	Н	S	S	M	S
CO3	S	Н	Н	S	M

Programme Code: 02	M. Sc Mathematics
Course code: 18PMA0D1	ALC 1 DISCRETE MATHEMATICS AND
	AUTOMATA THEORY
Batch 2018-2020	Credits 2

- 1. To understand mathematical foundations to create mathematical arguments.
- 2. To enable to know how lattices and Boolean algebra are used as mathematical models of network systems.
- 3. To know about Automata Theory and its applications.

Course Outcomes (CO)

K1	CO1	Remembering the concepts of Mathematical logic.	
K2	CO2	Explaining the implication problems using truth table, replacement	
		process and rules of inference.	
K3	CO3	Solving normal forms of given logical expression.	
K4	CO4	Analyzing Karnaugh map for simplifying the Boolean expression.	

Syllabus

UNIT I

Logic – introduction* – T F – statements – Connectives - atomic and compound statements – well formed formulae – Truth Table of a formula – Tautology

UNIT II

Tautological implications and equivalence of formulae – Replacement process – Functionally complete sets of connectives and duality law - Normal forms – Principal normal forms .

UNIT III

Theory of inference – indirect method of proof - open statements - Quantifiers

UNIT IV

Boolean algebra – Boolean Polynomials – Karnaugh map $(K-map\ for\ 5\ variables\ and\ 6\ variables$ are not included) Switching circuits (simple circuits)

UNIT V

Theory of Automata – **definition – description*** – transition systems – properties – acceptability of a string by a finite automaton – Non deterministic finite state machines - the equivalence of DFA and NDFA - Mealy and Moore models

Text Books

1. M.K Venkataraman , N.Sridharan and N.Chandrasekaran , Discrete mathematics -

The National Publish Company, New Delhi, 2000.

2. K.L.P Mishra & N.Chandrasekaran, Theory of computer sciences, Second Edition,

Prentice Hall of India Private Ltd., 2001

Unit V Chapter 2 Sections 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8

Reference Books

1. J.P.Trembley and R.Manohar, Discrete Mathematical Structures with applications to

Computer Science, International Edition, Mc Graw Hill, 1975.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	S	M	M
CO2	Н	S	Н	M	M
CO3	S	Н	S	M	M
CO4	M	S	M	Н	M

18PMA0D2

Programme Code: 02	M. Sc Mathematics
Course code: 18PMA0D2	ALC 2 ASTRONOMY
Batch 2018-2020	Credits 2

Course Objectives

- 1. To acquire the knowledge about the celestial objects and planets.
- 2. Develop skills to design observing projects with research telescopes and projects drawing upon data in the literature and in archives.
- 3. To be familiar with the appearance of a range of common astronomical objects, such as asteroids, comets, satellites, planets, stars, and galaxies.

Course Outcomes(CO)

K1	CO1	Defining about the observed properties of physical systems that comprise
		the known universe.
K2	CO2	Demonstrate their ability to read, understand, and critically analyze the
		astronomical/physical concepts
K3	CO3	Applying their physics and mathematical skills to problems in the areas of
		planetary science.
K4	CO4	Analyze to draw valid scientific conclusions and communicate those
		conclusions in a clear and articulate manner.

Syllabus

UNIT I Celestial sphere, Diurnal Motion – Celestial Co-ordinates.

UNIT II The Earth: **Zones of Earth*** – Terrestrial Latitudes and Longitudes – Dip of Horizon – Twilight.

UNIT II Refraction

UNIT IV Kepler's laws*, seasons – calendar

UNIT V The moon – eclipses.

Text Book

S.Kumaravelu and Susheela Kumaravelu, Astronomy for Degree classes,

Rainbow Printers, Nagercoil, 2000.

Unit I	Chapter II	Sections 39 to 79
Unit II	Chapter III	Sections 1, 2, 5, 6
Unit III	Chapter IV	
Unit IV	Chapter VI	
	Chapter VII	Sections 2, 3
Unit V	Chapter XII	
	Chapter XIII.	

Reference

V.B.Bhatia , Text book for Astronomy and Astrophysics with elements of Cosmology,
 2nd Edition, Narosa Publishing House, New Delhi, 2001.

Mapping

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	M	S	Н	S
CO2	M	S	Н	S	Н
CO3	S	Н	S	Н	M
CO4	Н	S	M	M	S

18PMA0D3

Programme Code: 02	M. Sc Mathematics
Course code: 18PMA0D3	ALC 3 INTERNET AND JAVA PROGRAMMING
Batch 2018-2020	Credits 2

Course Objectives

- 1. To understand the difference between C, C++ and Java Programs.
- 2. To explore the Java Applications and to identify the variations between Stand alone java applications and Web based applications.
- 3. To provide the advanced concepts in java programming like Package, Multi Thread and Applet.

Course Outcomes (CO)

K1	CO1	Remembering the basic concepts of OOPs, Data Types, Control	
		Statements and Tokens.	
K2	CO2	Understanding about the java statements.	
К3	CO3	Applying the concept of Package, Thread and Applet in	
		program	
K4	CO4	Inspect the java concepts and get the new innovative ideas.	

Syllabus

UNIT I

Introduction to internet – Design concepts – Introduction to internet – Resources of Internet – Hardware requirements – Software requirements of internet – internet Service Providers – Internet Addressing. Introduction to web – Using the web – URL schemes – Host names and port numbers – Using the browser – Hypertext and HTML *.

UNIT II

Java history - Java features – Java Differs from C and C++ - Java and internet – Java Environment – **Java program structure – Java tokens*** – Java statements – Implementing java program – Java virtual machine – command line arguments – constant s- variables – data types – operator and expressions – Decision making and looping.

UNIT III

Classes – Defining a class – Adding variables – Adding methods – creating objects – Accessing class members – constructors – methods overloading – static numbers – nesting of methods – inheritance – overloading methods – final variables and methods – find class – finalizer methods -abstract methods and class – visibility control – arrays – creating an array – Two dimensional arrays – vectors – Wrapper – classes – interfaces – multiple inheritance.

UNIT IV

Packages – Java API packages – Using system packages – naming conventions – creating packages – Accessing a package – using a package – Adding a class to a package – hiding classes. Multithreaded programming – creating threads – extending a thread class – stopping and blocking a thread – life cycle of a thread – using thread methods - thread exceptions – thread priority – Synchronization – managing errors and exceptional.

UNIT V

Applet programming – Building Applet code – Applet life cycle – creating an executable applet – AWT – Graphics Programming.

Text Books

- 1. E. Balagurusamy, Programming with Java, Tata Mcgraw Hill, 1998.
- 2. Harley Hahn, The Internet Complete Reference, 2nd Edition Tata Mcgraw Hill, 1996.
- 3. Patric Naughton, Java Hand Book, Tata Mcgraw Hill, 1996

Reference Books

- 1. Wendy G.Lehnert, Internet, 101 Pearson Education Asia, Addison Wesley Longman, 2001.
- 2. Ned Snell, Teach yourself the Internet in 24 hours, Published by G.C.Jain for Techmedia, 1998.
- 3. C.Muthu, Programming with Java, Vijay Nicole imprints Pvt., Ltd, 2004.

4. H.M.Deitel, P.J.Deitel, Java TM Hour to program, Pearson Education pre Ltd., 2005.

Mapping

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	M	S	Н	S
CO2	M	S	Н	S	Н
CO3	S	Н	S	Н	M
CO4	Н	S	M	M	S

S- Strong; H-High; M-Medium; L-Low

Programme Code: 02		M. Sc Mathematics	
Major Elec	tive Paper FLUID D	YNAMICS	
Batch	Hours / Week	Total Hours	Credits
2018-2020	7	105	5

- **1.**To have a good understanding of the fundamental equation of viscous compressible fluid.
- **2.**To enable to Bernoulli equations, Momentum theorems and its applications.
- **3.**To understand the motion of solid bodies in fluid and sound knowledge of boundary layer theory.

Course Outcomes (CO)

K1	CO1	Defining the fundamental aspects of fluid flow behaviour.	
K2	CO2	Classifying the flow patterns of a fluid (gas or liquid) depend on its	
		characteristic.	
К3	CO3	Utilizing the fluid dynamics to analyze the flow of air over the surface	
		to calculate pressure, changes in velocity using the Blasius's equation.	
K4	CO4	Analyzing the steady state kinetic energy equation for fluid flow	
		systems and estimate pressure drop in fluid flow systems.	

Syllabus

UNIT I (21Hours)

Introductory Notions – Velocity – Stream Lines and path lines – Stream tubes and Filaments – Fluid Body – Density –pressure*. Differentiation following the fluid – Equation of continuity – Boundary conditions (Kinematical and physical) - Rate of change of linear momentum – Equation of motion of an inviscid fluid.

UNIT II (21Hours)

Euler's momentum theorem - conservative forces - Bernoulli's theorem in steady motion — Energy equation for inviscid fluid — circulation — Kelvin's theorem — vortex motion — Helmholtz equation.

UNIT III (21Hours)

Two-dimensional motion* – two-dimensional functions – complex potential -Basic singularities – source, vortex and doublet. Circle theorem - Flow past a circular cylinder with circulation – conformal transformation – Blasius's theorem – lift force.

UNIT IV (21Hours)

Viscous flow – Navier Stokes Equations – vorticity and circulation in a viscous fluid – steady flow through an arbitrary cylinder under pressure – steady couette flow between cylinders in relative motion – steady flow between parallel planes.

UNIT V (21Hours)

The Laminar boundary layer in incompressible flow - Boundary layer concept - Boundary layer equations. Displacement thickness - momentum thickness - kinetic energy thickness - integral equation of boundary layer - flow parallel to semi-infinite flat plate - Blasius's equation and its solution in series.

* denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Books

1. L.M.Milne Thomson, Theoretical Hydro dynamics, Macmillan Company, Vedition, 1968. (For Units I and II)

Unit I	Chapter 1	Sections $1.0 - 1.3$
	Chapter 3	Sections $3.10 - 3.40$ (omit sections 3.32)
Unit II	Chapter 3	Sections 3.41 to 3.53 (omit sections 3.44)

2. N.Curle and H.J.Davies, Modern Fluid Dynamics – Vol. I, D.Van nostrand Company Ltd, London, 1968. (For Units III, IV and V)

Unit III	Chapter 3	Sections $3.1 - 3.7$ (omit $3.4 \& 3.5.3$)
Unit IV	Chapter 5	Sections 5.1 to 5.3 (omit 5.3.4 and 5.3.5)
Unit V	Chapter 6	Sections $6.1 - 6.3$ (omit $6.2.2$ and $6.3.2$ to $6.3.5$)

Reference Books

- F.Chorlton, Text book of Fluid Dynamics , CBS Publishers and distributors, New Delhi-32,1998.
- 2. M.D.Raisinghawia, Fluid Dynamics, S.Chand and Company Ltd, New Delhi 55, 1995.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	M	Н	Н
CO2	Н	S	M	M	Н
CO3	S	Н	M	Н	Н
CO4	Н	M	Н	Н	S

S - Strong; H-High;

M-Medium; L-Low

Programme Code: 02		M. Sc Mathematics	
Major Elective Paper -	RATIONS RESEAR	СН	
Batch	Hours / Week	Total Hours	Credits
2018-2020	7	105	5

- 1. It enables students to acquire the knowledge of mathematics and statistics.
- 2. The study helps to locate the best or optimal solutions to a problem.
- 3. It sharpens the students brain in making quick decisions in an administrative situation.

Course Outcomes (CO)

K1	CO1	Recalling various methods of solving linear programming problem.
K2	CO2	Classifying duality and dual simplex method, pure and mixed integer
		programming problem, solution of revised simplex method and bounded
		variable problems.
К3	CO3	Applying the concept of sequencing problem techniques to find total
		elapsed time for processing n jobs through 2 machines, n jobs through k
		machines and 2 jobs through k machines.
K4	CO4	Categorizing various types of queuing models and classify the queuing
		problems that belongs to which model and solve the given queueing
		system. Distinguish linear and non linear programming problems.

Syllabus

Unit I (21 Hours)

Duality in Linear Programming: General Primal – Dual Pair – Formulating a Dual problem – Primal – Dual Pair in Matrix Form – Duality Theorems – Complementary slackness theorem – Duality and Simplex Method – Dual Simplex Method.

Unit II (21 Hours)

Integer Programming: Pure and mixed integer programming problem. Gomory's All I.P.P Method – Fractional Cut Method; All Integer LPP – Mixed Integer LPP - Linear Programming Problem; Advanced Techniques – Revised Simplex Method – Bounded variables.

Unit III (20 Hours)

Sequencing Problem : Problem of Sequencing – Basic Terms - Processing n jobs through Two Machines - Processing n jobs through k Machines – Processing 2 jobs through k Machines – Maintenance Crew Scheduling Unit IV (22 Hours)

Queueing Theory: **Queueing system*** – Elements of a Queueing system – Operating Characteristics of a Queueing system - Probability Distributions in Queueing systems – Classification of Queueing models - Transient and steady states – Poission Queueing systems ;Queuing models $\{(M/M/1): (\infty/FIFO)\}, \{(M/M/1): (\infty/FIFO)\}, \{(M/M/1): (\infty/FIFO)\}$ and $\{(M/M/C): (N/FIFO)\}$.

Unit V (21Hours)

Non Linear Programming: General Non – Linear Programming Problem – **Constrained Optimization with Equality Constraints*** – Constrained Optimization with Inequality Constraints

–Kuhn–Tucker Conditions with non-negative Constraints.

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

Kanti Swarup, P.K. Gupta and Man Mohan, Operations Research, 14th Edition (2008), Sultan Chand & Sons, Educational Publishers, New Delhi.

Unit I	Chapter 5	Sections 5.1 to 5.7 and 5.9
Unit II	Chapter 7	Sections 7.1 to 7.6
	Chapter 9	Sections 9.1, 9.2, and 9.4
Unit III	Chapter 12	Sections 12.1 to 12.7
Unit IV	Chapter 21	Sections 21.1 to 21.4, 21.6 to 21.9
		(above specified Queuing Models only)
Unit V	Chapter 27	Sections 27.1, 27.3 to 27.5
	Chapter 28	Sections 28.1 and 28.3

^{*} denotes Self study(Questions may be taken from these portions also).

Reference Books

- Hamdy A. Taha , Operations Research An introduction, 5th Edition Prentice Hall of India, New Delhi , 1996
- 2. J.K.Sharma ,Operations Research Theory and applications , 1^{st} Edition , Macmillan India Ltd, 1997.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	M	Н	Н
CO2	Н	S	Н	M	S
CO3	Н	Н	M	Н	Н
CO4	S	M	Н	M	S

Programme Code: 02	M. Sc Mathematics		
Major Elective Paper FUNDAMEN	TALS OF ACTUAR	RIAL MATHEMAT	ICS
Batch	Hours / Week	Total Hours	Credits
2018-2020	7	105	5

- 1 To use standard techniques of mathematics to solve problems in actuarial science
- 2. To calculate the values of Annuity and Annuity dues .
- 3. To know the concepts of Life insurance premiums, Temporary assurance, Whole Life assurance and the values of policies.

Course Outcomes (CO)

K1	CO1	Remembering the concept of Insurance policies and its benefits.
K2	CO2	Understanding the consequences of events involving risk and
		uncertainity.
К3	CO3	Applying various modelling techniques to evaluate quantitative risk analysis.
K4	CO4	Analysing the appropriate Life insurance plans suitable for the individual or concern.

Syllabus

UNIT I (21 Hours)

Annuities Certain – Present Values* – Amounts –Deferred Annuities – Perpetuities Present Value of an Immediate Annuity Certain – Accumulated Value of Annuity – Relation between S_n and a_n – Present Value of a Deferred Annuity Certain – Accumulated Value of a Deferred Annuity Certain – The Accumulated Value of an Annuity due of one p.a. for a term of n years – Perpetuity – Present Value of an Immediate Perpetuity of 1 p.a – Present Value of a Perpetuity due of 1 p.a – Deferred Perpetuity with Determent Period of m years – Mortality Table – The Probabilities of Survival and Death.

UNIT II (21 Hours)

Life Insurance Premiums – General Considerations* – Assurance Benefits – Pure Endowment Assurance – Endowment Assurance – Temporary Assurance or Term Assurance – Whole Life Assurance – Pure Endowment Assurance – Endowment Assurance – Double Endowment Assurance – Increasing Temporary Assurance – Increasing Whole Life Assurance – Commutation Functions D_x , C_x , M_x and R_x – Expressions for Present Values of Assurance – Benefits in Terms of Commutation Functions – Fixed Term (Marriage) Endowment – Educational Annuity Plan.

UNIT III (21 Hours)

Life Annuities and Temporary Annuities – Commutation Functions N_x – To Find the Present Value of an Annuity Due of Re. 1 p.a for Life – Temporary Immediate Life Annuity – Expression for a_x : $_n$ - Deferred Temporary Life Annuity – Variable Life Annuity – Increasing Life Annuity – Commutation Function S_x – Increasing - Temporary Life Annuity – Tables of Life Annuity and Temporary Life Annuity - Variations in the Present Values of Annuities – Life Annuities Payable at Frequent Intervals.

UNIT IV (21 Hours)

Net Premiums for Assurance Plans – Natural Premiums – Level Annual Premium – Symbols for Level Annual Premium under Various Assurance Plans – Mathematical Expressions for level Annual Premium under Level Annual Premium under Various Plans for Sum Assure of Re. 1 – Net Premiums – Consequences of Charging Level Premium – Consequences of Withdrawals – Net Premiums for Annuity Plans – Immediate Annuities Deferred Annuities.

UNIT V (21 Hours)

Premium Conversion Tables – Single Premium Conversion Tables – Annual Premium Conversion Tables – Policy Values - Two Kinds of Policy Values – Policy Value in Symbols – Calculation of Policy Value for Unit Sum Assure – Numerical Example: Retrospective Method and Comparison with Prospective Value – Derivative of Theoretical Expressions for Policy

 $Value, \ _{t}V_{x} \ by \ the \ Retrospective \ Method \ and \ Prospective \ Method - Other \ Expressions \ for \ Policy \\ Value - Surrender \ Values - Paid \ up \ Policies - Alteration \ of \ Policy \ Contracts.$

* denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

Mathematical Basis of Life Assurance, Insurance Institute of India, Mumbai, June 2007.

Unit I	Sections II.1 to II.27
	Sections V.1 to V.7
Unit II	Sections VIII.1 to VIII. 6
	Sections IX .1 to IX.19
Unit III	Sections X.1 to X.16
Unit IV	Sections XI.1 to XI.7
	Sections XII.1 to XII.4
Unit V	Sections XIII.1 to XIII.6
	Sections XV.1 to XV.10

Reference Book

1. Statistics, Insurance Institute of India, Mumbai, 1989.

Mapping

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	S	S	Н	S
CO2	M	S	Н	S	Н
CO3	S	Н	M	Н	M
CO4	Н	S	M	M	S

S- Strong; H-High; M-Medium; L-Low

Programme Code: 02	M. Sc Mathematics		
Major Elective Paper CRYPTOGRAPHY			
Batch 2018-2020	Hours / Week	Total Hours	Credits
	7	105	5

- 1 To enable the students to acquire the knowledge about Classical Cipher Systems, Shift Registers and Public Key systems.
- 2. To be familiar with information security awareness and a clear understanding of its importance.
- 3. To be exposed to the importance of integrating people, processes and technology.

Course Outcomes (CO)

K1	CO1	Remembering the basic encryption techniques.
K2	CO2	Understanding the cryptographic theories, principles and technique
		used in security properties.
K3	CO3	Constructing a range of different cryptosystems from an applied view
		point.
K4	CO4	Analyzing the methods of Cryptography

Syllabus

UNIT I (21 Hours)

Classical Cipher Systems: Introduction – **Transposition ciphers*** – Substitution ciphers – The Haselin Machine.

UNIT II (21 Hours)

The information themetical approach : The general scheme – The information measure and absolute security – The unicity distance.

UNIT III (21 Hours)

The Data Encryption Standard : The DES algorithm – Analysis of DES – The modes of the DES.

UNIT IV (21 Hours)

Shift Registers: Stream and block enciphering – The theory of Finite state machines – shift registers – Random properties of shift register sequences – The generating function.

UNIT V (21 Hours)

Public Key systems : Introduction — **The RSA system*** — Public Key systems based on elliptic curves.

* denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

Jan C A Van Der Lubby, Basic Methods of cryptography , Cambridge University Press, 1998.

Unit I	Sections	2.1 to 2.4
Unit II Unit III	Sections Sections	3.1 to 3.3 4.1, 4.4 and 4.5
Unit IV	Sections	5.1 to 5.5
Unit V	Sections	6.1, 6.2 and 6.5

Reference Books

K.Blitz N.A., course in number theory and cryptography, Springer verlag, 1988.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	M	S	S	Н	S
CO2	M	S	Н	M	Н
CO3	S	Н	S	Н	M
CO4	Н	S	M	M	S

Programme Code: 02	M. Sc Mathematics			
Non Major Elective Paper SYSTEMS ANALYSIS AND DESIGN				
Batch 2018-2020	Hours / Week	Total Hours	Credits	
	4	60	5	

- 1. To enable the learners to understand the concepts of Foundations for systems development, Structuring system requirements and Designing Data bases.
- 2. To explain the principles, methods and techniques of systems development.
- 3. To elaborate on the application areas for different types of methods.

Course Outcomes (CO)

K1	CO1	Defining and describe the phases of the system development life cycle.
K2	CO2	Demonstrating the forms and reports and designing interfaces.
К3	CO3	Building the system development alternatives.
K4	CO4	Examining the system analysis problems.

Syllabus

UNIT-I (12 Hours)

Foundations for systems development: The systems development environment - Succeeding as a systems analyst – Automated tools for systems development - Initiating and planning systems development projects.

UNIT-II (12 Hours)

Analysis: Determining system requirements – Traditional methods – Modern methods – Radical methods – Internet Development: Determining system requirements – structuring system requirements: Process modeling.

UNIT-III (12 Hours)

Structuring system requirements: Logic modeling - Structuring system requirements : conceptual data modeling.

UNIT-IV (12 Hours)

Design: Designing databases - **Designing Forms and Reports - Designing Interfaces and dialogues** * - Finalizing Design Specifications.

UNIT-V (12 Hours)

Implementation and Maintenance: System Implementation – Maintaining

Information systems.

* denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

Jeffrey A. Hoffer, Joey F. George, Joseph S. Valacich , Modern Systems Analysis and Design, $3^{\rm rd}$ edition, Pearson Education, 2003.

Unit I	Sections	1, 2, 4, 6
Unit II	Sections	7, 8, 9 (Process Modeling)
Unit III	Sections	9,10
Unit IV	Sections	12, 13, 14, 15
Unit V	Sections	17, 18

Reference Books

- 1. Elias M Awad, Systems Analysis and Design, Galgotia Publ, 2nd Edition,1996.
- James A Senn, Analysis and Design of Information Systems, TMH Publ, 2nd Edition, 1989.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	Н	Н	Н
CO2	S	M	Н	Н	S
CO3	S	M	Н	Н	S
CO4	Н	M	S	S	M

Programme Code: 02		M. Sc Mathematics		
Non-Major Elective Paper VISUAL BASIC AND ORACLE				
Batch	Hours / Week	Total Hours	Credits	
2018-2020	4	60	5	

- 1. To develop visual programming skills for modern software development.
- 2. To get the knowledge on Graphical User Interface.
- 3. To apply Visual Basic controls in data base management system.

Course Outcomes (CO)

K1	CO1	Remembering the fundamentals of visual basic and procedures.
K2	CO2	Understanding the Visual Basic controls and command button
		properties.
K3	CO3	Making use of visual data manager and data bound control for the
		database programming with Visual Basic.
K4	CO4	Analyzing the connection between ORACLE and VB.

Syllabus

Unit I (12 Hours)

The fundamentals of VB – IDE – Variables – Procedures – Control flow statements – loop statements – simple programs on using procedures.

Unit II (12 Hours)

VB Controls – Text box – list box – combo box – scroll box – image – picture box – DIR control – **Drive control*** – Data control – file control – label command button properties – method of each control – small programs based on the above controls.

Unit III (12 Hours)

Advanced Active X controls – introduction to Active X – **Rich text box control*** – MS flexi grid control – common dialogue control – multiple document interface – database programming with VB using the Visual data manager – data validation -accessing fields in a record sets – Advanced data bound controls – data bound list control – data bound combo box control – data bound grid control.

Unit IV (12 Hours)

Windows API – Basic Concepts – accessing the WIN 32 API from VB – Windows arguments, declaring 32 bit functions and structures – what is OLE – an example of embedding and linking – Building your own Active X control.

Unit V (12 Hours)

ORACLE – DDL – DML – integrity and security – primary and foreign key relationship – An example of simple and compound queries – establishing connection between ORACLE and VB. * denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

Pertroutsoe.E, Mastering VB 6.0, BPB Publications, 1999.

Reference Books

- 1. P.K.Mc Bride, Programming with Visual Basic, BPB Publications, New Delhi, 1999.
- 2. Penfolo, Microsoft Visual Basic, Galgotia Publishers, New Delhi, 1999.
- 3. Srikanth, First step to Oracle, BPB Publications, New Delhi, 1999.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	Н	S	Н	M
CO2	S	S	M	S	Н
CO3	M	M	S	Н	S
CO4	Н	S	M	S	M

Programme Code: 02				
Non Major Elective Paper: FUZZY LOGIC AND NEURAL NETWORKS				
Batch	Hours / Week	Total Hours	Credits	
2018-2020	4	60	5	

- 1. To understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy operations and fuzzy logic.
- 2. To know the concepts of neural networks and neuro-modeling.
- 3. To study the basics of neural network architectures and some learning algorithms.

Course Outcomes (CO)

K1	CO1	Recalling the difference between crisp set theory and fuzzy set theory.
K2	CO2	Explaining the concepts of operations on fuzzy set.
К3	CO3	Applying the learning methods in neural network architectures.
K4	CO4	Examining the Back propagation learning algorithm.

Syllabus

UNIT I (12 Hours)

Fuzzy Sets: Crisp sets – Fuzzy sets: Basic Types, Basic concepts – Additional properties of α -cuts – Representations of fuzzy sets – Extension prinicple for fuzzy sets.

UNIT II (12 Hours)

 $Operations\ On\ Fuzzy\ Sets:\ Types\ of\ operations-fuzzy\ complements-fuzzy$

intersections: t-Norms – Fuzzy unions: t-conorms.

UNIT III (12 Hours)

 $\label{eq:Fuzzy Logic: Classical logic - multivalued logics - fuzzy propositions - fuzzy quantifiers.$

UNIT IV (12 Hours)

Fundamentals Of Neural Networks: Basic concepts – Model of an Artificial Neuron – Neural Networks Architectures – **characteristics of Neural Network** – Learning Methods – Early Neural Network Architectures.

UNIT V (12 Hours)

Backpropagation Networks: Introduction – Architecture of a Backpropagation Networks – Backpropagatiopn Learning.

* denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book 1. George J.Klir and Boyman, Fuzzy sets and Fuzzy Logic – Theory and Applications, PHI Learning Pvt. Ltd., 2012. (for units – I, II and III)

2. S. Rajasekaran and G.A.Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and Genetic Algorithms, PHI Learning Pvt. Ltd., 2008. (for units - IV and V)

Unit I Chapter 1,2 Sec 1.2,1.3,1.4,2.1,2.2,2.3

Unit II Chapter 3 Sec 3.1 - 3.4

Unit III Chapter 8 Sec 8.1 - 8.3

Unit IV Chapter 2 Sec 2.1,2.3 – 2.6,2.9

Unit V Chapter 3 Sec 3.1,3.2.

Reference Books

George J.Klir and Tina A.Folger, Fuzzy Sets, Uncertainty and Information, Prentice-Hall of India Private Limited-Fourth printing-June 1995.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	M	Н	S
CO2	Н	S	M	M	S
CO3	M	M	S	S	Н
CO4	S	Н	Н	S	M

Programme Code: 02		M. Sc Mathematics	
Non Major Elective Paper MEASURE AND INTEGRATION			
Batch	Hours / Week	Total Hours	Credits
2018-2020	4	60	5

- 1. To understand the concepts of Measurable functions and Integrable functions.
- 2. To know about Lebesgue measure and Lebesgue integral.
- 3. To apply measurable functions in convegence theorems and The Radon Nikodym theorem.

Course Outcomes (CO)

K1	CO1	Remembering the concepts of Measure and outer measure	
K2	CO2	Classifying the difference between various measures	
К3	CO3	Applying measure theory in theorems like monotone convergence	
		theorem, bounded convergence theorem.	
K4	CO4	Analyzing L ^p spaces.	

Syllabus

Unit I (12 Hours)

Lebesgue Measure: Introduction, Outer measure, Measurable sets and Lebesgue measure and Measurable functions.

Unit II (12 Hours)

The Lebesgue Integral: The Lebesgue integral of a bounded function over a set of finite measure, The integral of a non negative function, The general Lebesgue integral.

Unit III (12 Hours)

Differentiation and Integration : Differentiation of monotonic functions, Functions of bounded variation, Differentiation of an integral and Absolute continuity.

Unit IV (12 Hours)

Measure and Integration : Measure spaces*, Measurable functions, Integration and General convergence theorems.

Unit V (12 Hours)

 $\label{eq:continuous_problem} \textbf{The Radon-Nikodym Theorem:} \ \ Signed \ measures, \ The \ Randon-Nikodym \ Theorem: \ and \ The \ L^P \ spaces.$

* denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk / Power point presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

H.L. Royden, Real Analysis, 3rd Edition, Macmillan Publishing Company,

New York, 2007.

Unit I	Chapter 3	(Omit Sections 4 and 6)
Unit II	Chapter 4	(Omit Sections 1 and 5)
Unit III	Chapter 5	(Omit Section 5 only)
Unit IV	Chapter 11	Sections 1,2,3 and 4.
Unit V	Chapter 11	Sections 5, 6 and 7.

Reference Books

- 1. Walter Rudin, Principles of Mathematical Analysis, McGraw Hill.Inc, New York, Third Edition, 1976.
- 2. G.de Barra, Wiley Eastern, Measure Theory and Integration, NewDelhi, 1981.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	Н	S	Н	M
CO2	M	S	M	M	Н
CO3	S	Н	S	Н	S
CO4	S	S	Н	S	S

CIA / END SEMESTER THEORY EXAMINATION QUESTION PAPER PATTERN

M.SC MATHEMATICS

Pattern I

Time: 3 hrs Max Marks: 75

Section A

10 Questions 10x1 = 10 Marks

(Multiple Choice- 4 Choices only)

Section B

5 Questions 5x5 = 25 Marks (Either Or Type)

Section C

5 Questions 5x8 = 40 Marks (Either Or Type)

Total 75 Marks

Distribution of Marks for CIA

Tests (2)	15	Marks
Assignment	5	Marks
Attendance	5	Marks
Total	25	Marks

JOB ORIENTED COURSE (JOC)

S.No	JOC	Department		
1	Communicative English	English (UG)		
2	Copy Writing	English (PG)		
3	Visual Basic & Oracle	Mathematics (PG)		
4	Maintenance and Troubleshooting of Electronic	Physics (PG)		
	Equipments & Home Appliances			
5	Textile Technology	Chemistry (PG)		
6	Medicinal Plants and Phythotheraphy	Biochemistry (PG)		
7	Plant Tissue Culture	Biotechnology (UG) & (PG)		
8	Biofertilizer & Biocontrol Agents,	Biotechnology (UG) & (PG)		
9	MS Office and Internet	Computer Science (UG)		
10	Adobe Pagemaker and Photoshop	Computer Science & Computer		
		Applications (UG)		
11	Web Designing	Master of Computer Application		
		(PG)		
12	Food Processing and preservation	Plant Biology (PG)		
13	Programming in R	Bioinformatics (PG)		
14	Share Trading Operations	Commerce (PG)		
15	Clinical Nutrition and Dietetics	Zoology (PG)		