KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

COIMBATORE - 641 029

DEPARTMENT OF MATHEMATICS (UG)

CURRICULUM AND SCHEME OF EXAMINATIONS (CBCS)

(2018-2019 and onwards)

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

Coimbatore - 641029

Vision:

Developing the total personality of every student in a holistic way by adhering to the principles of Swami Vivekananda and Mahatma Gandhi.

Mission:

Imparting holistic and man-making education with emphasis on character, culture and value - moral and ethical.

Designing the curriculum and offering courses that transform its students into value added skilled human resources.

Constantly updating academic and management practices towards total quality management and promotion of quality in all spheres.

Extending the best student support services by making them comprehensive and by evolving a curriculum relevant to student community and society at large.

Taking steps to make education affordable and accessible by extending scholarships to the meritorious and economically disadvantaged students.

Moulding the teachers in such a way that they become the role models in promoting Higher Education.

DEPARTMENT OF MATHEMATICS

Vision:

- 1. To enrich the Mathematical and Analytical skill of the student
- 2. To produce quality Mathematical science researches
- 3. To emphasis the students to apply the theoretical Mathematics to bring out as Mathematical models

Mission:

- 1. To inculcate moral values and ethical values.
- 2. To upgrade the students knowledge to meet the academic challenges.
- 3. To equip the students with the necessary mathematical tools to meet the competitive global environment.

PROGRAMME OUTCOME (PO)

- **PO 1:** Students will be well equipped with Mathematical, analytical and logical skills which will rack up with a thorough knowledge of the core and the allied papers.
- **PO 2:** Procuring innovative ideas to face global challenges which accomplish various rewarding positions in the society.
- **PO 3:** Develop the knowledge, skills and attitude necessary to pursue higher studies in Mathematics.
- **PO 4:** Formulate and interpret real life problems mathematically.
- **PO 5:** Students will acquire the reasoning ability and problem solving skill to get through various competitive examinations.
- **PO 6:** Students will be equipped to choose a prominent career in Industry, Banks, MNCs, and higher studies.
- **PO 7:** Apply knowledge of Mathematics in the fields of Statistics, Physical Science, Life Science and Computer Science.
- **PO 8:** Students will inculcate and develop the managing ability and critical thinking to solve business problems and take up career as an Entrepreneur.

PROGRAMME SPECIFIC OUTCOMES (PSO)

PSO 1: Understanding the basic and the advanced concepts in Mathematics .

PSO 2: Developing manipulative and numerical skills in the various areas including Physics and Statistics.

PSO 3: Understanding the concepts of Core and the allied areas of Mathematics, provides a strong foundation for the systematic development of learning process.

PSO 4: Applying Mathematical techniques to solve the real life problems.

PSO 5: Identify, formulate and analyze Mathematical problems reaching sustained conclusions.

CURRICULUM AND SCHEME OF EXAMINATIONS (CBCS)

(APPLICABLE TO STUDENTS ADMITTED DURING THE ACADEMIC YEAR 2018-2019 & ONWARDS)

Semester	Subject Code/ Question Paper Code			Tide of the Danser	Instruction Hours		xam. Ma		\$ Duration of Exam.	Credits
		Part		Title of the Paper	Ins	CIA	ESE	Total		
	18TML101 [@]	I	LAN	Tamil I/ Hindi I / Malayalam I/ French I /Sanskrit I	6	25	75	100	3	3
	18ENG101	II	LAN	English I	6	25	75	100	3	3
	18UMA101	III	CP 1	Classical Algebra	4	25	75	100	3	4
I	18UMA102	III	CP 2	Calculus	5	25	75	100	3	4
	18UMA1 I 1	III	AP A1	Statistics I	7	25	75	100	3	5
	18EVS101	IV	EVS	Environmental Studies**	2	-	50	50	3	2
				Total	30			550		21
	18 TML202 [@]	I	LAN	Tamil II/ Hindi II / Malayalam II/ French II/Sanskrit II	6	25	75	100	3	3
	18ENG202	II	LAN	English II	6	25	75	100	3	3
	18UMA203	III	CP 3	Differential Equations and Laplace Transforms	4	25	75	100	3	4
II	18UMA204	III	CP 4	Trigonometry, Vector calculus and Fourier Series	5	25	75	100	3	4
	18UMA2I2	III	AP A2	Statistics II	7	25	75	100	3	5
	18VED201	IV	VED	Value Education -Moral and Ethics**	2	-	50	50	3	2
				Total	30			550		21

	18TML303 [@]	I	LAN	Tamil III/ Hindi III / Malayalam III/ French III/ Sanskrit III	6	25	75	100	3	3
III	18ENG303	II	LAN	English III	6	25	75	100	3	3
	18UMA305	III	CP 5	Analytical Geometry	4	25	75	100	3	4
	18UMA306	III	CP 6	Statics	3	25	75	100	3	4
	18UPH3A1	III	AP B1	Physics I Theory	5	20	55	75	3	4
	-	III	APr 1	Physics I Practical	2	-	-	-	-	-
	18UGA3S1	IV	SBS 1	General Awareness	2	25	75	100	3	3
	18TBT301 / 18TAT301/ 18UHR3N1		NMEP 1	Basic Tamil * / Advanced Tamil **/ Non - Major Elective Paper- I **	2	-	75	75	3	2
				Total	30			650		23
IV	18TML404 [@]	I	LAN	Tamil IV/ Hindi IV / Malayalam IV / French IV/Sanskrit IV	6	25	75	100	3	3
	18ENG404	II5	LAN	English IV	6	25	75	100	3	3
	18UMA407	III	CP 7	Graph Theory	3	25	75	100	3	4
	18UMA408	III	CP 8	Dynamics	4	25	75	100	3	4
	18UPH4A2	III	AP B2	Physics II – Theory	5	20	55	75	3	4
	18UPH4AL	III	A Pr 1	(Physics – Practical)	2	20	30	50	3	2
	18UMA4S2	IV	SBS 2	Theory of Numbers	2	25	75	100	3	3

	18TBT402 / 18TAT402 / 18WHR4N2	IV	NMEP 2	Basic Tamil * / Advanced Tamil **/ Non - Major Elective Paper- II **	2	-	75	75	3	2
				Total	30			700		25
V	18UMA509	III	CP 9	Real Analysis I	5	25	75	100	3	3
	18UMA510	III	CP 10	Complex Analysis I	6	25	75	100	3	4
	18UMA511	III	CP 11	Modern Algebra I	6	25	75	100	3	4
	18UMA512	III	CP 12	(Programming in C- Theory)	4	25	75	100	3	3
	18UMA5CL	III	C Pr 1	Programming in C- Practical	2	40	60	100	3	2
	18UMA5E1	I	MEP 1	Major Elective Paper	5	25	75	100	3	5
	18UMA5S3	IV	SBS 3	Fundamentals of LaTeX- Theory	2	25	75	100	3	3
				Total	30			700		24
VI	18UMA613	III	CP 13	Real Analysis II	6	25	75	100	3	4
	18UMA614	III	CP 14	Complex Analysis II	6	25	75	100	3	4
	18UMA615	III	CP 15	(Modern Algebra II)	6	25	75	100	3	4
	18UMA6E2	III	MEP 2	Major Elective Paper	5	25	75	100	3	5
	18UMA6E3	III	MEP 3	Major Elective Paper	5	25	75	100	3	5
	18UMA6S4	IV	SBS 4	Fundamentals of LaTeX - Practical	2	25	75	100	3	3
	\$\$	V	EA	Extension Activity* (NSS / NCC /PYE/YRC etc)	-	50	-	50	-	1
				Total	30			650		26
					TO	ΓAL		3800		140

\$\$ NCC /NSS /PYE /YRC /RRC /ECC /WEC

@ Hindi -18HIN101/202/303/404

French -18FRN101/202/303/404

Malayalam -18MLM101/202/303/404

Sanskrit -18SAN101/202/303/404

- * No End of semester examinations. Only CIA
- ** No CIA. Only End of semester examinations

MAJOR ELECTIVE PAPERS

(3 papers are to be chosen from the following 9 papers)

- 1. Discrete Mathematics and Automata Theory
- 2. Operations Research
- 3. Numerical Methods
- 4. Linear Algebra
- 5. Business Application Software
- 6. Astronomy
- 7. Fuzzy Mathematics
- 8. Combinatorics
- 9. Stochastic processes

NON-MAJOR ELECTIVE PAPERS

- 1. Human Rights
- 2. Women's Rights
- 3. Consumer Affairs

Note

CBCS – Choice Based Credit System, CIA – Continuous Internal Assessment, ESE – End Semester Examination, LAN – Language, CP – Core Paper,

AP A – Allied Paper A (First Allied), APB – Allied Paper B (Second Allied),

EVS – Environmental Studies, VED – Value Education, APr – Allied Practical, SBS – Skill Based Subject, CPr – Core Practical, NMEP – Non Major Elective Paper, MEP – Major Elective Paper,

NCC - National Cadet Corps, NSS - National Service Scheme, PHE - Physical Education,

YRC – Youth Red Cross, EA – Extension Activity.

25% CIA is applicable to all subjects under Parts I, II, III and IV (Skill based subjects only)

(No CIA for other subjects in part IV), for Part V CIA only (No ESE).

Co curricular activities like NCC / NSS / Sports /YRC are conducted outside College hours.

Tally Table

Part	Subject	Subject		Total Credits
I	Language (Tamil/ Hindi/ F	rench/	400	12
	Malayalam/ Sanskrit)	(4)		
II	English	(4)	400	12
III	Core-Theory/Practical	(16)	1600	60
	Elective (Major)	(3)	300	15
	Allied	(4)	400	20
IV	Basic Tamil/Adv.Tamil / N	Ion Major	150	4
	Elective	(2)	150	+
	Skill Based Subject	(4)	400	12
	Environmental Studies	(1)	50	2
	Value Education	(1)	50	2
V	Extension Activity	(1)	50	1
	Grand Total		3800	140

BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN

K1-Remember; K2-Understanding; K3-Apply; K4-Analyze; K5-Evaluate

1. Theory Examination - Part I, II & III

(i) CIA I & II and ESE: 75 Marks

Knowledge Level	Section	Marks	Description	Total
K1 Q1 to 10	A (Answer all)	$10 \times 1 = 10$	MCQ	
K2 Q11 to 15	B (Either or pattern)	5 x 5 = 25	Short Answers	75
K3 & K4 Q16 to 20	C (Either or pattern)	5 x 8 = 40	Descriptive / Detailed	

(ii) CIA I & II and ESE: 55 Marks

Knowledge Level	Section	Marks	Description	Total
K1 Q1 to 10	A (Answer all)	$10 \times 1 = 10$	MCQ	
K2 Q11 to 15	B (Either or pattern)	5 x 3 = 15	Short Answers	55
K3 & K4 Q16 to 20	C (Either or pattern)	5 x 6 = 30	Descriptive / Detailed	

2. Practical Examination:

Knowledge Level	Level		Total
K3	Experiments	50	
K4		10	60
K5	Record Work	10	

3. Project Viva Voce:

Knowledge Level			Total
K3	Project Report	60	00
K4		20	80
K5	Viva voce	20	

Components of Continuous Internal Assessment

Components			Marks	Total
Theory	Theory CIA 1 75		(75+75=150/10)	
	CIA 2	75	15	25
Ass	signment/Sen	ninar	5	23
	Attendance		5	
Practical	CIA Pr	actical	25	
Obs	ervation Note	ebook	10	40
Attendance			5	
Project Review		15	20	
Regularity			5	20

Programm	e Code : 02	B.Sc Mathematics				
Course Code:	18UMA101	Core Paper 1 - Classical Algebra				
Batch Semester		Hours / Week	Credits			
2018-2021	I	4	60	4		

Course Objectives

- 1. To get the knowledge of convergence and divergence of a series.
- 2. To find the summation of series.
- 3. To understand the nature of the roots of an algebraic equation.

Course Outcomes (CO)

K1	CO1	Finding the roots of a polynomial function.
K2	CO2	Classifying convergence and divergence of a series.
К3	CO3	Applying the Binomial theorem, Exponential theorem, logarithmic theorem to find summation of series.
K4	CO4	Analyzing the nature of the roots of the equation.

Syllabus

UNIT I (12 Hours)

Convergency and Divergency of series: **Definitions – Elementary results*** –Some general theorems connecting infinite series – Series of positive terms - - Comparison tests - De Alembert's ratio test - Raabe's test.

UNIT II (12 Hours)

Cauchy's condensation test- Cauchy's root tests. - Absolute Convergent series .

UNIT III (12 Hours)

Binomial, Exponential and Logarithmic series theorems. Their application to Summation only.

UNIT IV (12 Hours)

Theory of equations: **Roots of an equation*** – Relations between the roots and coefficients- Symmetric function of the roots -Transformations of equations –Character and position of roots – Reciprocal equation.

UNIT V (12 Hours)

Descarte's rule of signs - Rolle's theorem - Multiple roots - Nature of the roots of f(x)=0 - Horner's method.

^{*} denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk / Powerpoint presentation/ Seminar/Quiz/Discussion/Assignment

Text Book

T. Natarajan and others, Algebra, S.Viswanathan (Printers & Publishers) Pvt. Ltd, Chennai, 1997.

Reference Books

- 1. P.N.Chatterji, Algebra, Rajhans Prakasham Mandir, Meerut (U.P), 1994.
- 2. M.L.Khanna, Algebra, Jai Prakash Nath & Co, Meerut (U.P), 1991.
- 3. A.R. Vasishtha and R.K. Gupta, Krishna Prakasham Mandir, Meerut (U.P), 1990-91.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	M	Н	M
CO2	S	Н	S	M	S
CO3	Н	S	Н	Н	M
CO4	S	S	Н	M	Н

S- Strong; H-High; M-Medium; L-Low

Programme Code : 02		B.Sc Mathematics		
Course Code: 18UMA102		Core Paper 2 – CALCULUS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	I	5	75	4

Course Objectives

- 1. To give basic knowledge about Mathematical concepts in calculus.
- 2. To evaluate double and triple integrals.
- 3. To learn different methods of integration, Beta and Gamma integrals which form the basis for higher studies.

Course Outcomes (CO)

K1	CO1	Remembering the formulas in differentiation and integration.
K2	CO2	Interpret the definite integral geometrically as the area under a curve.
K3	CO3	Apply the concept of definite integral to solve various kinds of problems.
K4	CO4	Analyze the values of the derivative at a point algebraically.

Syllabus

UNIT I (15 Hours)

Curvature –Radius of curvature in Cartesian and Polar forms –Evolutes and Envelopes - Pedal equations –**Total differentiation*** –Euler's theorem on homogeneous functions.

UNIT II (15 Hours)

Integration of $f^1(x)/f(x)$, $f(x)f^1(x)$, $(px+q)/\sqrt{(ax^2+bx+c)}$, $\sqrt{(x-\alpha)/(\beta-x)}$, $\sqrt{(x-\alpha)}(\beta-x)$, $1/\sqrt{(x-\alpha)/(\beta-x)}$, $1/(a\cos x + b\sin x + c)$, $1/(a\cos^2 x + b\sin^2 x + c)$ - **Definite integrals***-Integration by parts – Reduction formulae.

UNIT III (15 Hours)

Double integrals – Evaluation - Change of order of integration in double Integral – Applications to calculate areas – Areas in polar coordinates.

UNIT IV (15 Hours)

Triple integrals – Evaluation – Jacobian - Change of variables in double and triple integrals using Jacobian – Volume as a triple integrals.

UNIT V (15 Hours)

Notion of improper integrals and their convergence - Simple tests for convergence, Simple problems. Beta and Gamma functions - Properties - Relation between them - Applications of Gamma functions to multiple integrals.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Books

- 1. S. Narayanan and T.K.M.Pillai, Calculus Vol. I (Differential Calculus), S.Viswanathan (Printers and Publishers) Pvt. Ltd, Chennai, 1999. (For Unit I)
- 2. S. Narayanan and T.K.M.Pillai, Calculus Vol. II (Integral Calculus) S.Viswanathan (Printers and Publishers) Pvt. Ltd, Chennai, 1997. (For Units II, III, IV and V).

Reference Books

- 1. N.P.Bali, Integral Calculus, Laxmi Publications, 4th Edition, 1980.
- A.R.Vasishtha and S.K.Sharma, Integral Calculus , Krishna Prakashan Mandir, Meerut, 1990.
- 3. Shanthi Narayan, Differential Calculus, Shyam Lal Charitable Trust, New Delhi, 1993.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	M	Н	S
CO2	Н	M	Н	S	S
CO3	M	Н	S	S	Н
CO4	Н	S	S	Н	M

S-Strong H-High M-Medium L-Low

18UMA1**I**1

Programme Code : 02			B.Sc Mathematics	
Course Code : 18UMA1I1		Allied Paper 1-ST	TATISTICS – I	
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	I	7	105	5

Course Objectives

- 1. To enable the students to acquire the knowledge of statistics.
- 2. To remember the properties of various statistical functions.
- 3. To understand the concepts of some statistical distributions.

Course Outcomes (CO)

K1	CO1	Remembering the concepts of probability and random variables
K2	CO2	Understanding the properties of some distributions.
К3	CO3	Solving mean, median, mode, moments and moment generating functions of Binomial, Poission and Normal distributions.
K4	CO4	Analyzing how correlation is used to identify the relationships between variables and how regression analysis is used to predict outcomes.

Syllabus

UNIT I (21 Hours)

Probability: Introduction – Basic Terminology – Mathematical Probability – Axiomatic Approach to Probability –Theorems on Probability – Conditional Probability – Multiplicative Theorem of Probability – Independent Events - Multiplicative Theorem of Probability for independent Events – Bayes Theorem – Distribution function – *Properties of Distribution functions – Random variables – Discrete random variables.

UNIT II (21 Hours)

Mathematical Expectations: Introduction – Mathematical Expectation or expected value of a random variable – Expected value of functions of a random variables – Properties of expectation – properties of variance – Moment generating function – Cumulants – Properties of Cumulants – Properties of Characteristics of functions – Tchebechev's inequality.

18UMA1**I**1

UNIT III (21 Hours)

Correlation: Introduction – Types of correlation – Methods of studying correlation – Karl Pearson's coefficient of correlation. Regression: Introduction – Regression lines – Regression Equations.

UNIT IV (21 Hours)

Binomial Distribution: Moments of Binomial Distribution – Recurrance Relation for the Moments of Binomial Distribution – Mean Deivation about Mean of Binomial Distribution – Mode of Binomial Distribution – MGF of Binomial Distribution – Additive Property – Characteristic Function – Cumulants of the Binomial Distribution.

Poission Distribution: The Poission Process – Moments – Mode – Recurrance Relation – MGF – Characterisite Function – Cumulants -*Additive property.

UNIT V (21 Hours)

Normal Distribution: Introduction – Mode – Meidan – MGF – Cumulant generating function – Moments – Points of inflexion – Mean deviation about mean.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Books

- 1. S.C.Gupta and V.K.Kapoor, Fundamentals of Mathematical Statisitics, Sultan Chand and Sons, New Delhi -2, 2011 (For Units I,II,IV,V)
- 2. S.P.Gupta, Statistical Methods, Sultan Chand and Sons, New Delhi -2, 2011. (For Unit III)

18UMA1**I**1

Reference Books

- 1. R.S.N. Pillai and V.Bagavathi,, "Statistics", Sultan Chand, New Delhi, 2008.
- 2. Gupta S.P, Statistical Methods, Sultan Chand, New Delhi, 33rd Edition, 2005.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	Н	S	M	S
CO2	S	Н	M	S	Н
CO3	Н	M	S	S	S
CO4	S	S	Н	M	Н

S - Strong; H-High; M-Medium; L-Low

18EVS101

PART IV - ENVIRONMENTAL STUDIES

Total Credits: 2 Total Hours: 30

Objectives:

- 1. To inculcate knowledge and create awareness about ecological and environmental concepts, issues and solutions to environmental problems.
- 2. To shape students into good "eco-citizens" thereby catering to global environmental needs.

UNIT I MULTIDISCIPLINARY NATURE OF ENVIRONMENT (6 hours)

Definition: scope and importance – Need for public awareness - Natural resources – Types of resources – Forest Resources – Water Resources – Mineral Resources – Food Resources – Energy Resources – Land Resources.

UNIT II ECOSYSTEMS

(6 hours)

Concept of an ecosystem – Structure and functions of an ecosystem – Procedures, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food web and ecological pyramids – Structure and function of the following ecosystem – Forest Ecosystem – Grassland Ecosystem – Desert Ecosystem – Aquatic Ecosystem.

UNIT III BIODIVERSITY AND ITS CONSERVATION

(6hours)

Introduction – Definition – Genetic – Species and ecosystem diversity- Bio geographical classification of India – Value of biodiversity – Biodiversity at global, national and local levels – India as a mega – diversity Nation – Hot spot of biodiversity – Threats to biodiversity – Endangered and endemic species of India – Conservation of Biodiversity – insitu Conservation of Biodiversity – exsitu Conservation of Biodiversity

UNIT IV ENVIRONMENTAL POLLUTION

(6 hours)

Definition - Causes, effects and control measures of : Air Pollution - Water Pollution - Soil Pollution - Marine Pollution - Noise Pollution - Thermal Pollution - Nuclear Pollution - Solid Waste Management: Causes, effects, control measures of urban and industrial wastes - Role of individual in prevention of pollution - Pollution case studies - domestic waste water, effluent from paper mill and dyeing, cement pollution - Disaster Management - Food, Drought, Earthquake, Tsunami, Cyclone and Landslide.

18EVS101

UNIT V SOCIAL ISSUES AND THE ENVIRONMENT

(6 hours)

Sustainable Development – Urban problems related to energy – Water Conservation: Rain Water Harvesting and Watershed Management – Resettlement and rehabilitation of people, its problems and concerns, case studies Narmatha Valley Project – Environmental ethics, issues and possible solutions – Climate change, global warming, ozone layer depletion, acid rain, nuclear accidents and holocaust, case studies – Hiroshima and Nagasaki, Chernobyl – Consumerism and waste products – Environmental Protection Act – Air Pollution Act (Prevention and Control) – Water Pollution Act (Prevention and control) – Wild Life Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness – Human Population and the environment – Population Growth and Distribution – Population Explosion – Family Welfare Programme – Environment and Human Health – Human Rights – Value Education – HIV/ AIDS – Women and Child Welfare – Role of Information Technology in Environment and Human Health –.

*Self Study (Questions may be asked from these topics also)

Text Book

1.P.Arul, A Text Book of Environmental Studies, Environmental Agency, No 27, Nattar street, Velacherry main road, Velacherry, Chennai – 42, First Edition, Nov.2004.

References

- 1.Purohit Shammi Agarwal, A text Book of Environmental Sciences, Publisher Mrs.Saraswati Prohit, Student Education, Behind Naswan Cinema Chopansi Road, Jodhpur.
- 2.Dr.Suresh and K.Dhameja, Environmental Sciences and Engineering , Publisher S.K.Kataria & Sons, 424/6, Guru Nanak Street, Vaisarak, Delhi -110 006.
- 3.J.Glynn Henry and Gary W Heinke, Environmental Science and Engineering, Prentice Hall of India Private Ltd., New Delhi $-110\,001$.

Programm	e Code: 02		B.Sc Mathematics	
Course Code: 18UMA203		Core Paper 3 - Differential Equations And Laplace		
Course Code: 1801viA203			Transforms	
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	II	4	60	4

Course Objectives

- 1. To solve second-order linear differential equations with constant and variable coefficient.
- 2. To get the ability of solving first and second order ordinary differential equations and first order partial differential equations.
- 3. To get the knowledge about Laplace and inverse Laplace transforms.

Course Outcomes (CO)

K1	CO1	Recalling the concept of first order linear differential equations.
K2	CO2	Understanding the concept of first order higher degree ordinary
K2	CO2	differential equations
К3	CO3	Solving Linear partial differential equations by using the Lagrange's
N.S	COS	method.
K4	CO4	Analyzing the concepts of Laplace transforms and inverse Laplace
N 4	CO4	transforms to solve ODE with constant coefficients.

Syllabus

UNIT I (12 Hours)

Linear equations with Constant Coefficients: Complementary function of a linear equation with constant coefficients – Particular integral of $f(X) = e^{mx}$, sin mx, cosmx, x^m , $X e^{mx}$ – Linear equations with variable coefficients- Equations reducible to linear equations.

UNIT II (12 Hours)

Ordinary differential equations: Equations of the First order but of higher degree: Equations solvable for p – Equations solvable for x – Equations solvable for y – Clairaut's form – Methods for solving dx/P = dy/Q = dz/R conditions of integrability – Simultaneous linear differential equations of the form $f_1(D)x + \phi_1(D)y = T_1$

$$f_2(D)x + \phi_2(D)y = T_2$$

where f_1 , f_2 , ϕ_1 and ϕ_2 are rational integral functions of D=d/dt with constant coefficients and T_1 and T_2 are explicit functions of t.

UNIT III (12 Hours)

Partial differential equations of the first order: **Eliminating arbitrary constants and arbitrary functions*** –Definition of general, particular and complete solutions – Singular and general solutions of first order equations in the standard form $f(p, q)=0, f(z, p,q)=0, f(x,p,q)=0, f(y,p,q)=0, f_1(x, p)=f_2(y, q), z=p(x)+q(y)+f(p, q)$ – Lagrange's method of solving the linear partial differential equation Pp+Qq=R.

UNIT IV (12 Hours)

Laplace Transforms: **Definition –Transforms of e**^{at}, * cos at, sin at and tⁿ where n is an integer. First shifting theorem – Laplace transforms of e^{at} sin bt, e^{at} cos bt, and e^{at} tⁿ. Theorems of $L\{f^1(t)\}$, $L\{f^n(t)\}$ - Laplace Transform of periodic functions.

UNIT V (12 Hours)

Inverse Laplace transformation – Application of Laplace transform to solution of differential equations with constant coefficients .

* denotes Self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk / Powerpoint presentation/ Seminar/Quiz/Discussion/Assignment

Text Books

S.Narayanan and T.K.Manickavachagam Pillai, "Differential Equations and its Applications", S.Viswanathan (Printers and Publishers) Pvt. Ltd, Chennai, 2014.

Unit I	Chapter V	Sections 1 to 6
Unit II	Chapter IV	Sections 1 to 3
	Chapter VI	Sections 4 to 6
Unit III	Chapter XII	Sections 1 to 4,
		Sections 5.1 to 5.4
Unit IV	Chapter IX	Sections 1 to 5
Unit V	Chapter IX	Sections 6 to 9

Reference Books

- **1.** S.Narayanan and T.K.M.Pillai, Calculus, S.Viswanathan (Printers and Publishers) Pvt. Ltd, Chennai, 1996.
- 2.N.P.Bali, Differential Equations, Laxmi Publications (P) Ltd., New Delhi, 2004.
- Dr.J.K.Goyal and K.P.Gupta , Laplace and Fourier Transforms, Pragati Prakashan Publishers, Meerut, 2000.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	Н	S	M	Н	S
CO2	S	Н	M	S	Н
CO3	S	M	Н	M	S
CO4	M	Н	S	M	Н

S - Strong; H-High; M-Medium; L-Low

Programme Code : 02		B.Sc Mathematics		
Course Code:	c 18UMA204 Core Paper 4 - Trigonometry, Vector Calculus And			
		Fourier Series		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	II	5	75	4

Course Objectives

- 1. To Enable the students to provide basic knowledge of trigonometry
- 2. To Inculcate the knowledge of vector calculus and applying it for theorems
- 3. To understand the expansions of Fourier series.

Course Outcomes (CO)

K1	CO1	Defining the hyperbolic and inverse hyperbolic functions.
K2	CO2	Illustrating the Fourier co-efficient for Periodic functions.
K3	CO3	Applying the differential operator to find Gradient, Divergence and Curl
K4	CO4	Examining the multiple integrals by applying Gauss divergence theorem, Stoke's theorem and Green's theorem.

Syllabus

UNIT I (15 Hours)

Expansions of cosn ϕ , **sinn** ϕ ,* $\cos^n \phi$, $\sin^n \phi$ -Hyperbolic functions –Separation of real and imaginary parts of $\sin(\alpha + i\beta)$, $\cos(\alpha + i\beta)$, $\tan(\alpha + i\beta)$, $\sinh(\alpha + i\beta)$, $\cosh(\alpha + i\beta)$, $\tanh(\alpha + i\beta)$, $\tan^{-1}(\alpha + i\beta)$, Logarithm of a complex number.

UNIT II (15 Hours)

Gradient of a scalar point function and Divergence and curl of a vector point function.

UNIT III (15 Hours)

Integration of point functions - Integral theorems - Gauss divergence theorem - Examples.

UNIT IV (15 Hours)

Green and Stokes theorems - Examples.

UNIT V (15 Hours)

Fourier series –Definition. Finding Fourier co-efficients for a given periodic function with period 2π -odd and even functions –**Half range series with period** π *.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Books

- 1. S. Narayanan, Trigonometry, S.Viswanathan (Printers & Publishers) Pvt. Ltd, Chennai, 1997.(For Units I)
- 2. P.Duraipandian and Laxmi Duraipandian , Vector Analysis, Emerald Publishers, 2008.

(For Units II, III and IV).

3.S.Narayanan and T.K.M.Pillai, Calculus Vol. III (Major), S.Viswanathan (Printers & Publishers) Pvt. Ltd, Chennai, 1997. (For Unit V).

Unit I	Chapter III	Sections 1 and 4
	Chapter IV	Sections 1 and 2
	Chapter IV	Sections 5
Unit II	Chapter II	Section 2.1 and 2.3 to 2.9
Unit III	Chapter III	Sections 3.1 and 3.8
	Chapter IV	Sections 4.2 and 4.8 (Relevant examples)
Unit IV	Chapter IV	Section 4.4, 4.5 and 4.8 (Relevant examples)
Unit V	Chapter VI	Sections 1 to 5

Reference Books

- 1. P.Kandasamy and K.Thilagavathi, Mathematics, S.Chand's and Company Ltd., Ram Nagar, New Delhi 55, 2004.
- 2. S.Narayanan and T.K.Manicavasagampillay, Vector Algebra and Analysis, S.Viswanathan Printers and Publishers Pvt., Ltd, 1995.
- 3. K.Viswanathan and S.Selvaraj, Vector Analysis, Emerald Publishers, Chennai 2, 1998.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	M	Н	Н
CO2	Н	S	S	M	Н
CO3	S	Н	M	Н	S
CO4	S	M	Н	S	Н

S- Strong H-High M-Medium L-Low

18UMA2**I**2

Programn	ne Code : 02		B.Sc Mathematics	3
Course Code	: 18UMA2 I 2	Allied Paper 2- STATISTICS – II		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	II	7	105	5

Course Objectives

- 1. To enable the students to give inference on statistical population based on sample statistics.
- 2. To Understand the concepts of various estimators.
- 3. To study the concepts of analysis of variance.

Course Outcomes (CO)

K1	CO1	Finding the derivations of t, χ^2 and F distributions.
K2	CO2	Explaining the procedure for Testing of hypothesis and sampling of
		attributes.
К3	CO3	Applying the concepts of various distributions in real time situations.
K4	CO4	Analyzing one - way and two – way Classifications and design of
		experiments.

Syllabus

UNIT I (21 Hours)

Chi Square Distribution: Introduction-Derivation of χ^2 Distribution – Moment Generating Function of χ^2 -t Distribution-F distribution.

UNIT II (21 Hours)

Theory of Estimation: Introduction – Characteristics of Estimators – Unbiasedness – Consistency – Efficient Estimators – Sufficiency – Cramer-Rao inequality

UNIT III (21 Hours)

Large Samples: Introduction-Types of Sampling- **Parameter and statistic***— Test of Significance- Procedure for Testing of Hypothesis- Test of Significance —Sampling of Attributes.

18UMA2I2

UNIT IV (21 Hours)

Applications of χ^2 -distribution- Applications of t-distribution - Applications of F-distribution - Relation between t and F distributions - Relation between F and χ^2 distributions.

UNIT V (21 Hours)

Analysis of Variance - One - Way Classification - ANOVA table - Two - Way Classification. Design of Experiments: Introduction - Experimental Units - **Basic Principles in the Design of Experiments*** - Complete Block Designs - Completely Randomized Design - Randomized Block Design - Latin Square Design - Analysis of Latin Square Design - Merits and Demerits of Completely Randomised Design - Merits and Demerits of Random Block Design and Latin Square Design.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Books

- 1. S.C.Gupta and V.K.Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand and Sons, New Delhi- 2, 2011.(For Units I, II, III, IV)
- 2. P.R. Vittal, Mathematical Statistics, Margham Publications, Chennai 2004.(For unit V)

Unit I	Chapter 15	Sections 15.1 to 15.3
	Chapter 16	Sections 16.1, 16.2(16.2.1, 16.2.2, 16.2.3), 16.5(16.5.1, 16.5.2, 16.5.3)
Unit II	Chapter 17	Sections 17.1, 17.2, 17.3
Unit III	Chapter 14	Sections 14.1 to 14.7
Unit IV	Chapter 15 Chapter 16	Sections 15.6 (15.6.1, 15.6.2) Sections 16.3 (16.3.1, 16.3.2, 16.3.3), 16.6, 16.7, 16.8.
Unit V	Chapter 26	Pages 26.14 to 26.27
	Chapter 28	Pages 28.1 to 28.17

18UMA2I2

Reference Books

- 1. B.L.Agarwal, Basic Statistics, New Age International Publishers, Chennai, 2009.
- 2. S.P.Gupta, Statistical Methods, Sultan Chand and Sons, New Delhi- 2, 2011.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	M	Н	S	M
CO2	M	S	S	M	Н
CO3	S	Н	M	S	S
CO4	Н	S	M	Н	Н

S - Strong; H-High; M-Medium; L-Low

18VED201

SEMESTER-II

PART-IV VALUE EDUCATION: MORAL AND ETHICS

Total Hours: 30 Total Credits: 2

OBJECTIVES:

- > To impart the value education in every walk of life.
- > To make them understand the relationship between Moral and Ethics.
- > To impart the right attitude by practicing self introspection.
- > To make them realize about their hidden power within them.
- To develop a knowledge for the steps of upliftment.
- > To know about their goal of life.
- > To make them understand the importance of yoga and meditation.
- > To realize what is the real peace.
- To understand what are the ways to contribute peace to the whole world.
- > To goad youth to reach excellence and reap success.

UNIT I: 6hrs

Introduction – Meaning of Moral and Ethics – Ethics and Culture – Aim of Education.

UNIT II: 6hrs

Swami Vivekananda – A Biography.

UNIT III: 6hrs

The Parliament of Religions – Teachings of Swami Vivekananda.

UNIT IV: 6hrs

Steps for Human Excellence.

UNIT V: 6hrs

Yoga & Meditation.

18VED201

Text Book:

 $\label{lem:condition} Value\ Base\ Education-Moral\ and\ Ethics-Published\ by\ Kongunadu\ Arts\ and\ Science\ College\ (Autonomous),\ First\ Edition,\ 2015.$

Reference Book:

Easy steps to Yoga by Swami Vivekananda, A Divine Life Society Publication, 2000.

Question paper pattern

(External only)

Duration: 3 hrs Total Marks: 50

Answer all Questions (5 x 10 = 50 Marks)

Essay type, either or type questions from each unit.

Programme Code: 02		B.Sc Mathematics		
Course Code: 18UMA305		Core Paper 5 - Analytical Geometry		
Batch 2018-2021	Semester III	Hours / Week 4	Total Hours 60	Credits 4

Course Objectives

- 1. To gain knowledge about coordinate geometry and also about geometrical aspects.
- 2. To know the concepts of cone and cylinder.
- 3. To determine coordinate axes and coordinate planes in the dimensional space.

Course Outcomes (CO)

K1	CO1	Remembering the equation of a line that passes through a given point which is parallel or perpendicular to a given line.
K2	CO2	Understanding the results based on the properties of a sphere.
K3	CO3	Identifying conic sections.
K4	CO4	Analyzing the concepts of geometry.

Syllabus

UNIT I (10 Hours)

Analytical geometry of two dimensions: **Polar equation of a conic*** –directrix –Chord – Tangent –Normal.

UNIT II (16 Hours)

Analytical geometry of three dimensions: - Straight lines - Co-planarity of Straight lines - Shortest distance (S.D) and Equations of S.D between two lines.

UNIT III (12 Hours)

Sphere: - **Standard equation of a sphere*** – results based on the properties of a sphere – Tangent plane to a Sphere – Equations of a circle.

UNIT IV (12 Hours)

Cone and Cylinder: Cone whose vertex is at the origin-enveloping cone of a sphere – right circular Cone – equation of a cylinder – right circular cylinder.

UNIT V (10 Hours)

Conicoids: - Nature of conicoid –Standard equation of a central conicoids –Enveloping cone –Tangent Plane –conditions for tangency –Director sphere and director plane.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Books

1. T.K.M.Pillai & T.Natarajan, Analytical Geometry 2D, S.Viswanathan (Printers & Publishers) Pvt. Ltd, Chennai, 2000.

Unit I Chapter 9 Sections 9, 10 and 12

2. P.Duraipandian & Others, Analytical Geometry 3D, Emerald Publishers, Chennai – 2, 1998.

Unit II Chapter 4 Sections 4.1 to 4.8
Unit III Chapter 5 Sections 5.1 to 5.8
Unit IV Chapter 6 Sections 6.1 to 6.7
Unit V Chapter 6 Sections 6.9 to 6.13

Reference Books

- 1. Manicavachagom Pillay and Natarajan, Analytical Geometry, S.Viswanathan Printers and Publishers Pvt., Ltd, 2001.
- 2. A.R.Vasistha and J.N.Sharma, Analytical Geometry 3D, Krishna Prakashan Media (P) Ltd, Meerut, 1997.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	M	S	Н
CO2	Н	M	S	Н	M
CO3	M	Н	M	S	Н
CO4	Н	S	M	Н	M

S - Strong; H-High; M-Medium; L-Low

Programm	e Code : 02	B.Sc Mathematics		
Course Code: 18UMA306		Core Paper 6 – Statics		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	III	3	45	4

Course Objectives

- 1. To enable the knowledge of Forces and Moments.
- 2. To understand the notions of Friction.
- 3. To solve problems under friction and equilibrium of strings.

Course Outcomes (CO)

K1	CO1	Remembering the notions of friction and equilibrium of strings and
		deploy them in solving the problems.
K2	CO2	Understanding the concepts of forces and moments.
K3	CO3	Applying the concepts of forces in finding the resultant of any number of
		forces and the resultant of force and moments.
K4	CO4	Analyzing the basics of coplanar forces and equilibrium of forces acting on
		a rigid body and solving the problems.

Syllabus

UNIT I (9 Hours)

Forces acting at a point: **Resultant and Component*** - Parallelogram of Forces – Analytical expressions – Triangle of Forces – Perpendicular triangle of forces and its converse – Polygon of forces – Lami's theorem – $(\lambda$ - μ) theorem – Resolution and components of forces – Theorem on resolved parts, Resultant of any number of forces (Analytical and graphical methods) – Condition of any number of forces acting upon a particle.

UNIT II (9 Hours)

Parallel forces, moments: Resultant of two like and unlike parallel forces – condition of equilibrium of three coplanar parallel forces – Centre of two parallel forces – moment of a force – geometrical representation – Varigon's theorem – generalized theorems – moment of force about an axis – Couples: Definition – Equilibrium of two couples – Equivalence of two couples – Couples in parallel planes – Resultant of coplanar couples – Resultant of a couple and a force.

UNIT III (9 Hours)

Three forces acting on a rigid body: Rigid body subjected to any three forces – Three coplanar forces – Two triangle theorems (statements only) – Coplanar forces: Reduction of any number of coplanar forces – Analytical representation – Conditions for a system of forces to reduce to a single force.

UNIT IV (9 Hours)

Introduction – **Statical, Dynamical and limiting friction*** – Friction – Coefficient of friction – Angle of friction – Cone of friction – Equilibrium of a particle on a rough inclined plane.

UNIT V (9 Hours)

Equilibrium of Strings: Definition – Equation of common catenary – Tension at any point.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Book

M.K. Venkataraman, Statics, Agasthiar Publications, Trichy, 1999.

Unit I	Chapter 2	Sections 1, 3 to 16
Unit II	Chapter 3	Sections 2, 3, 5, 7, 9, 12, 13
	Chapter 4	Sections 1 to 4, 6 and 7
Unit III	Chapter 5	Sections 1, 2 and 5
	Chapter 6	Sections 2 to 7
Unit IV	Chapter 7	Sections 3, 5 to 8, 10
Unit V	Chapter 9	Sections 1, 2 and 4

Reference Books

- 1. A.V.Dharmapadam, Statics, S.Viswanathan Printers and Publishing Pvt., Ltd, 1993.
- 2. P.Duraipandian and Laxmi Duraipandian, Mechanics , S.Chand and Company Ltd,Ram Nagar, New Delhi -55, 1985.
- 3. Dr.P.P.Gupta, Statics, Kedal Nath Ram Nath, Meerut, 1983-84.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	M	Н	S	S	Н
CO2	Н	M	S	Н	M
CO3	S	M	Н	S	Н
CO4	Н	S	M	Н	M

SEMESTER-III

PART-IV SBS I – GENERAL AWARENESS

Total Hours: 30 Total Credits: 3

Course Objectives

- 1. To acquire knowledge in relation to various competitive examinations.
- 2. To encourage the students to newspaper reading and journals.
- 3. To familiarise the students with online examinations which are being adopted in competitive examinations.

Course Outcomes (CO)

K1	CO1	Knowledge about literature, Reasoning, Science and Technology and Youth Red Cross.
K2	CO2	Remembering important data on general knowledge
К3	CO3	Make use of the data for competitive examinations
K4	CO4	Analyse social phenomena

Syllabus

Unit I (6 Hours)

1. Tamil and other Literatures

Tamil, English, Christian and Muslim Literatures – Ancient Literature – Bakthi Literature – Epics – Medieval Literature – Modern Literature (Novel, Dramas, Short Stories, Modern Poetry).

2. Economics and Commerce

Basic Economics – Auditing – Management – Capital Market – Foreign Trade – Companies – Banking.

3. Social studies

Indian History – Inventions – Indian Poetry – Constitution - Judiciary – Languages – Literacy – Indian Geography – Lithosphere – Climate – Soil – Agriculture – Population.

UNIT II (6 hours)

4. Numerical Aptitude

Objective Arithmetic: Number systems – probability – HCF and LCM of numbers - decimal fractions – simplification – squareroots and cuberoots – average – percentage – profit and loss – ratio and proportion – time and work – simple interest – area, volume and surface area.

5. Verbal Aptitude

Spot the odd one out – correct form of verb – preposition – find out the rightly spelt word – choose the correct meaning of idioms – synonyms and antonyms.

6. Abstract Reasoning

Logic Reasoning: Logic – statement – arguments – statement assumptions – Statement course of action – theme detection – deriving conclusion from passages.

Non – verbal Reasoning : Series – analogy – classification – analytical reasoning – mirror images – water images – paper folding – paper cutting – rule detection – grouping of identical figures.

UNIT III (6 hours)

7. General Science and Technology

SCIENCE - Basic principles and concepts in Physics, Chemistry, Botany and Zoology.

TECHNOLOGY - Metallurgy, instrumentation, discoveries and inventions of techniques.

8. Computer Science

Historical evolution of computers – Computer applications – Data processing concepts – Computer codes and arithmetic – Hardware components – Data Structures.

9. Education

Development process of the learner – Principles of development (physical, social, emotional and intellectual) – Learning process – Teaching and teacher behaviour – Interaction analysis – Microteaching – Teacher as a leader – Motivation – Personality dimension – concept of mental health – Counselling.

UNIT IV (6 hours)

10. Library and Information Science

Library and Information Science – Basics, Computer, Library Network and others like Research, Reprography etc.

11. Sports and Games

Athletics – Track Events – Field Events – Games – Indoor Games – Outdoor Games – General knowledge – Sport and Olympics – First Aid.

12. Current Affairs

State, Central and International affairs: Budgets – Politics – Sports – Education – Commerce and Industry – Inventions – Science and Technology – Currency – Agriculture – Movies – Guinness records – Awards – IT Industry – Space Research – Defence etc.

UNIT V (6 hours)

13. National Cadet Corps (NCC)

Introduction to the Armed Forces (Army, Navy, Air Force) – Dril – Weapon Training – Map Reading – Civil Defence.

14. National Service Scheme (NSS)

History of NSS – History of Motto, Symbol, Badge – Aims and Objectives – Duties and Total Hours – Organisational and Administrational setup – History of voluntary organization – Regular activities – Special camp activities – Special programmes – awards – Important days.

15. Youth Red Cross (YRC)

History of International Red Cross – History of Indian Red Cross – History of Youth Red Cross – Main objectives of YRC – Emblem – Fundamental principles of Red Cross – Organizational Setup – Activities of Youth Red Cross – Role of different functionaries – Training programmes for YRC Program Officers – Training programme for YRC Volunteers – YRC Song – Working Hours – General orientation – Special orientation – Program skill learning.

Text Book

1. General Awareness, Question Bank, Kongunadu Arts and Science College, Coimbatore, First Edition 2014.

Reference Books

- 1. **General Knowledge Manual 2007**, Tata McGraw Hill Publication Company Limited, New Delhi, 2007.
- 2. Edgar Thorpe and Showick Thorpe, **The Pearson General Knowledge Manual 2013**, Dorling Kindersley India Pvt. Ltd, 2013.
- 3. Dr. Sanjay R Agashe, Introduction to **Physical Education Fitness and Sports**, Koncept Book, Uttarkhand, 2007.

Teaching Methods

Quiz/Discussion

MAPPING

PSO	PSO1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	Н	Н	Н	S	S
CO2	Н	S	Н	S	Н
CO3	Н	Н	S	Н	S
CO4	Н	S	Н	S	Н

 ${f S}-{f Strong}$ ${f H}-{f High}$ ${f M}-{f Medium}$ ${f L}-{f Low}$

Programm	e Code: 02	B.Sc Mathematics		
Course Code	: 18UMA407	Core Paper 7- Graph Theory		neory
Batch 2018-2021	Semester IV	Hours / Week	Total Hours 45	Credits 4

Course Objectives

- 1. To understand about the fundamental definitions and properties of graphs.
- 2. To Know more about directed and undirected graphs.
- 3. To enable to know the numerous applications of graph theory.

Course Outcomes (CO)

K1	CO1	Remembering the basic concepts of graph theory
K2	CO2	Understanding about the operations of graphs, trees, cut sets and network flows
K3	CO3	Interpreting the matrix representation of graphs
K4	CO4	Analyzing real time problems using the concept of graph theory

Syllabus

UNIT I (9 Hours)

Introduction: Application of graphs – **Finite and infinite graphs*** – incidence and degree – isolated vertex, pendant vertex and null graph.

Paths and Circuits – isomorphism – subgraphs – walks, paths and circuits – connected graphs, disconnected graphs and components – Euler graphs – operations on graphs – more on Euler graphs – Hamiltonian paths and circuits – the travelling salesman problem.

UNIT II (9 Hours)

Trees and fundamental circuits: **Trees – some properties of trees*** – pendant vertices in a tree – distance and centres in a tree – rooted and binary trees – on counting trees – spanning trees – fundamental circuits.

UNIT III (9 Hours)

Cut sets and Cut vertices: cut sets – some properties of a cut set – all cut sets in a graph – fundamental circuits and cut sets – connectivity and separability – network flows – 1 – isomorphism – 2- isomorphism.

UNIT IV (9 Hours)

Matrix representation of graphs: incidence matrix – submatrices of A(G) – circuit matrix – fundamental circuit matrix and rank of B – an application to a switching network – cut -set matrix - relationships among A_f , B_f and C_f – path matrix – adjacency matrix.

UNIT V (9 Hours)

Directed graphs: some types of digraphs – digraphs and binary relations – directed paths and connectedness – fundamental circuits in digraphs – matrices A, B and C of digraphs – adjacency matrix of a digraph.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Books

Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India (P) Ltd, New Delhi, 1997.

Unit I	Chapter 1	Sections 1.1 to 1.5
	Chapter 2	Sections 2.1 to 2.2, 2.4 to 2.10
Unit II	Chapter 3	Sections 3.1 to 3.8
Unit III	Chapter 4	Sections 4.1 to 4.8
Unit IV	Chapter 7	Sections 7.1 to 7.9
Unit V	Chapter 9	Sections 9.1 to 9.4, 9.7 to 9.9.

Reference Books

- 1. S.Arumugam and S.Ramachandran, Invitation to graph theory, Scitech Publications of India Pvt., Ltd, Chennai, 2001.
- 2. Frank Harary, Graph Theory, Narosa Publishing House, New Delhi, 2001.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	Н	M	S	Н	M
CO2	M	Н	M	S	Н
CO3	S	M	Н	M	S
CO4	Н	M	S	Н	M

Programm	e Code: 02		B.Sc Mathematics	
Course Code	e: 18UMA408	Core Paper 8 – Dynamics		ics
Batch 2018-2021	Semester IV	Hours / Week	Total Hours 60	Credits 4

Course Objectives

- 1. To enable the students to know the laws, principles and understand the concepts of motion of a particle and projectiles.
- 2. To provide the knowledge about the field of kinematics and impact between spheres.
- 3. To gain knowledge about simple harmonic motion and central orbits.

Course Outcomes (CO)

K1	CO1	Remembering the concepts of motion of a particle and projectile in different angles.
K2	CO2	Understanding the notions of impact between two smooth spheres in different ways.
К3	CO3	Applying the concept of simple harmonic motions in composition of two bodies in different directions.
K4	CO4	Distinguishing between the pedal equations of well known curves and solving two fold problems in central orbits.

Syllabus

UNIT I (12 Hours)

Motion in a straight line under uniform acceleration: Equations of motion* - acceleration of falling bodies -vertical motion under gravity -bodies freely falling downward-motion of a particle down a smooth inclined plane.

Laws of motion:* Momentum - Newton's laws of motion-composition of forces-weight-conservation of Linear momentum - motion of a connected particle- work-tension in an elastic string-work done in stretching an elastic string - power - energy - kinetic energy and potential energy-principles of conservation of energy-verification of principle of energy in the case of freely falling body.

UNIT II (12 Hours)

Introduction – Definitions – two fudamental principles- path of a projectile – characteristics of the motion of the projectile – proving the path is a parabola - to finding the velocity of the projectile in magnitude and direction at the end of time t – Given the magnitude of the velocity of projection to show that there are two directions of projection for the particle so as to reach a given point.

UNIT III (12 Hours)

Introduction –Definitions- Fundamental laws of Impact – Newton's experimental law-Impact of a smooth sphere on a fixed smooth plane – Direct impact of two smooth spheres – loss of kinetic energy due to direct impact of two smooth spheres – Oblique impact of two smooth spheres - loss of kinetic energy due to oblique impact of two smooth spheres-Dissipation of energy due to impact.

UNIT IV (12 Hours)

Introduction – simple harmonic motion in a straight line – general solution of the SHM equation –geometrical representation of a simple harmonic motion –Change of origin–composition of two simple harmonic motions of the same period and in the same straight line – composition of two simple harmonic motions of the same period in two perpendicular directions.

UNIT V (12 Hours)

Introduction - Radial and transverse component of velocity and acceleration – Differential equation of central orbits –Perpendicular from the pole on the tangent formulae in polar coordinates-Pedal equation of the central orbit- Pedal equation of some of the well known curves- Velocities in a central orbit – Two fold problems in central orbits – Apses and apsidal distances – Given the law of force to the pole to find the orbit.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Book

M.K. Venkataraman, Dynamics, 15th edition. Agasthiar Publications, Trichy, July 2012.

Unit I	Chapter 3	Sections 3.22, 3.29 to 3.32
	Chapter 4	Sections 4.1 to 4.12,4.17, 4.18, 4.24, 4.26 to 4.28, 4.30 to 4.36
Unit II	Chapter 6	Sections 6.1 to 6.9, 6.11
Unit III	Chapter 8	Sections 8.1 to 8.9
Unit IV	Chapter 10	Sections 10.1 to 10.7
Unit V	Chapter 11	Sections 11.1 to 11.2, 11.6 to 11.13

Reference Books

- A.V.Dharamapadam , Dynamics, S.Viswanathan Printers and Publishers Pvt., Ltd, Chennai, 1998.
- 2. K. Viswanatha Naik and M.S. Kasi, Dynamics, Emerald Publishers, 1992.
- 3. Naryanamurthi, Dynamics, National Publishers, New Delhi, 1991.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	M	Н	S	M
CO2	Н	S	M	Н	Н
CO3	S	M	Н	Н	M
CO4	M	S	S	M	S

18UMA4S2

Programme	e Code : 02	B.Sc Mathematics			
Course Code: 18UMA4S2 Skill Based Subject 2				2	
		TH	EORY OF NUMBE	ERS	
Batch	Semester	Hours / Week	Total Hours	Credits	
2018-2021	IV	2 30 3			

Course Objectives

- 1. To expose the basics of theory of numbers to the students.
- 2. To enable the students to learn the usage of prime numbers and factors.
- 3. To instill the method of Euclidean algorithm.

Course Outcomes (CO)

K1	CO1	Defining the concepts of divisibility, congruence, GCD and	
		prime numbers.	
K2	CO2	Explaining various divisibility tests.	
K3	CO3	Identifying G.C.D and L.C.M using prime factors.	
K4	CO4	Analyzing the nature of numbers.	

Syllabus

UNIT-I (6 Hours)

Divisibility: Associates – Division algorithm – G.C.D (H.C.F) – Euclidean algorithm – L.C.M.

UNIT-II (6 Hours)

Prime and Composite Numbers: Co-primes – the Sieve of Eratosthenes – Euclid's theorem – unique factorization theorem – Fundamental theorem of Arithmetic – Positional representation of an integer – Euler function Φ (n).

UNIT-III (6 Hours)

Greatest integer functions* – Mobius functions – Mobius inversion formula and its converse.

UNIT-IV (6 Hours)

Fibonacci numbers – Generalised Fibonacci numbers – Lucas numbers. **Congruences** : Definition – residue classes – complete and least residue systems – Reduced residue systems.

18UMA4S2

UNIT-V (6 Hours)

 $Divisibility\ tests-Linear\ congruences-\ solution\ of\ congruences-\ Chinese\ remainder\ theorem.$

*Self Study (Questions for Examination may be taken from the Self Study Portion also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Books

Professor S. Kumaravelu and Professor Susheela Kumaravelu, Elements of Number Theory, Raja Sankar Offset Printers, Sivakasi, 1st Edition, January 2002.

Unit I	Chapter III	Page No 45 to 59
Unit II	Chapter IV	Page No 60 to 69, 93 to 106
Unit III	Chapter VI	Page No 109 to 131
Unit IV	Chapter VII	Page No 134 to 146, 163 – 181
Unit V	Chapter IX	Page No 182 to 206

Reference Books

1. Ivan Niven and Herbert S Zuckerman, An Introduction to the theory of numbers, 3rd Edition, Wiley Eastern Ltd., New Delhi, 2000.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	M	S	Н	Н
CO2	S	S	Н	S	M
CO3	M	M	S	S	M
CO4	S	M	S	Н	M

Programme	e Code : 02	B.Sc Mathematics		
Course Code:	18UMA509	Core paper 9 - Real Analysis-I		
Batch Semester		Hours / Week	Total Hours	Credits
2018-2021	V	5	75	3

Course Objectives

- 1. To know about the basic notions of the real numbers system, set theory, relations and functions.
- 2. To enable to have knowledge about the basic topological properties and theorems based on point set topology.
- 3. To Study about the covering theorems, compactness, metric spaces and continuity of a function.

Course Outcomes (CO)

K1	CO1	Remembering the basic properties in the field of real numbers.
K2	CO2	Understanding the concepts of continuity, convergent sequences and
		metric spaces.
К3	CO3	Applying the concept of point set topology in related theorems
K4	CO4	Analyzing the compactness and to classify the continuity of a function
		with its limits.

Syllabus

UNIT I (15 Hours)

The Real and Complex number systems the field axioms, the order axioms –integers –the unique Factorization theorem for integers –Rational numbers –Irrational numbers –Upper bounds, maximum Elements, least upper bound –the completeness axiom –some properties of the supremum –properties of the integers deduced from the completeness axiom. The Archimedian property of the real number system –Rational numbers with finite decimal representation of real numbers –absolute values and the triangle inequality –the Cauchy-Schewarz, inequality* –plus and minus infinity and the extended real number system.

UNIT II (15 Hours)

Basic notions of a set theory. Notations –ordered pairs –Cartesian product of two sets – Relations and functions – further terminology concerning functions –one –one functions and inverse –composite functions –sequences –similar sets-finite and infinite sets –countable and uncountable sets –uncountability of the real number system –set algebra –countable collection of countable sets.

UNIT III (15 Hours)

Elements of point set topology: Euclidean space Rn –open balls and open sets in Rⁿ. The structure of open Sets in Rⁿ –closed sets and adherent points –The Bolzano –Weierstrass theorem –the Cantor intersection Theorem.

UNIT IV (15 Hours)

Covering –Lindelof covering theorem –the Heine Borel covering theorem –Compactness in Rⁿ –Metric Spaces –point set topology in metric spaces –**compact subsets of a metric space*** – Boundary of a set.

UNIT V (15Hours)

Convergent sequences in a metric space –Cauchy sequences –Completeness sequences – complete metric Spaces. Limit of a function –Continuous functions –continuity of composite functions.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk /PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Book:

T.M. Apostol, Mathematical Analysis, 2nd ed., Narosa Publishing Company, Chennai, 1990.

Unit I	Chapter 1	Sections 1.2, 1.3, 1.6 to 1.16, 1.18 to 1.20
Unit II	Chapter 2	Sections 2.2 to 2.15
Unit III	Chapter 3	Sections 3.2 to 3.9
Unit IV	Chapter 3	Sections 3.10 to 3.16
Unit V	Chapter 4	Sections 4.2 to 4.5, 4.8 and 4.9

Reference Books:

- 1. R.R. Goldberg, Methods of Real Analysis, NY, John Wiley, New York 1976.
- G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill, New York, 1963.
- 3. G. Birkhoff and MacLane, A survey of Modern Algebra, 3rd Edition, Macmillian, New York, 1965.
- 4. J.N. Sharma and A.R. Vasistha, Real Analysis, Krishna Prakashan Media (P) Ltd, 1997.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	Н	S	M
CO2	S	M	Н	S	M
CO3	Н	S	S	M	Н
CO4	M	Н	M	Н	S

Programm	e Code: 02		B.Sc Mathematics		
Course Code:	18UMA510	Core Paper 10 - Complex Analysis – I			
Batch	Semester	Hours / Week Total Hours Credits			
2018-2021	V	6	90	4	

Course Objectives

- 1. To recognize complex analysis as an essential part of mathematical background for engineers, physists and other scientists.
- 2. To introduce the students about the complex number system.
- 3. To Justify the need for a complex number system and explain how it is related to other existing number systems.

Course Outcomes (CO)

K1 CO1		Defining continuity, differentiability and analyticity of a complex
		valued function which helps the students to acquire deeper knowledge.
K2	CO2	Showing the condition(s) for a complex valued function to be analytic
		and/or harmonic.
K3	CO3	Developing the concept of sequences and series with respect to the
KJ	CO3	complex numbers system.
K4	CO4	Analyzing complex integration, Cauchy's integral formulae and
IX4	CO4	Cauchy's fundamental theorem and evaluation of complex integration.

Syllabus

UNIT I (18 Hours)

Complex number system : Absolute value of a complex number -Argument* - Inequalities in terms of moduli - Relevant examples. Complex plane: Elementary transformation. i) $w = z + \alpha$ ii) w = az iii) w = 1/z - Definition of extended complex plane -Stereographic projection. Elementary and conformal mappings: Bilinear transformation.

UNIT II (18 Hours)

Analytic functions: **Complex functions: Limit of a function*** – Continuity of a function – Differentiability and Analyticity of a function. Necessary conditions for differentiability – Sufficient conditions for differentiability – Cauchy-Riemann equations in polar coordinates – Definition of entire function.

UNIT III (18 Hours)

Power Series and Elementary functions: Power Series - Absolute convergence of a Power Series - Circle of convergence - Analyticity of the sum of power series in the Circle of convergence (term by term differentiation of a series) Elementary functions: Exponential, Trigonometric and Hyperbolic functions.

UNIT IV (18 Hours)

Conjugate Harmonic functions: Definition and determination, Conformal Mapping: Isogonal mapping – Conformal mapping - Mapping z--->>f(z), where f is analytic, particularly the mappings $w = e^z$; $w = \sin z$; w = 1/2(z + 1/z).

UNIT V (18 Hours)

Complex Integration: Simple rectifiable oriented curves- Integration of complex functions-Definite integral – Simply connected region - Proof of Cauchy's Theorem (using Goursat's lemma for a simply connected region). Cauchy's integral formula, Cauchy's integral formula for first derivatives - Cauchy's integral formula for higher derivatives - Morera's theorem.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk /PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Book

P. Duraipandian, Laxmi Duraipandian and D. Muhilan Complex Analysis, Emerald Publishers, Chennai –2, 1986.

Unit I	Chapter 1	Sections 1.7, 1.8, Relevant Examples in 1.9
	Chapter 2	Sections 2.6, 2.7, 2.8
	Chapter 7	Section 7.1
Unit II	Chapter 4	Sections 4.1 to 4.8 Relevant Examples in 4.10
Unit III	Chapter 6	Sections 6.1 to 6.7, 6.10, 6.11 Relevant Examples in 6.13
Unit IV	Chapter 6	Sections 6.12, 6.13
	Chapter 7	Sections 7.6 to 7.8 Relevant Examples in 7.9
Unit V	Chapter 8	Sections 8.1 to 8.9

Reference Books

- 1. Churchill and Others, Complex Variable and Applications, Tata Mecgrow Hill Publishing Company Ltd, 1974.
- 2. Santhinarayan, Theory of functions of Complex Variable, S. Chand and Company Meerut, 1995.
- 3. Tyagi B.S. Functions of Complex Variable, 17th Edition, Pragati Prakasham Publishing Company Ltd, Meerut, 1992-93.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	M	Н	S
CO2	Н	S	M	M	S
CO3	M	M	S	S	Н
CO4	S	Н	Н	S	M

Programme	e Code : 02	B.Sc Mathematics		
Course Code:	18UMA511	Core Paper 11 - Modern Algebra I		
Batch Semester		Hours / Week	Total Hours	Credits
2018-2021	V	6	90	4

Course Objectives

- 1. To know the concepts of group theory and ring theory
- 2. To understand the concepts of Ideals and Quotient Rings
- 3. To enable the concepts of Cauchy's theorem for Abelian groups , Sylow's theorem for Abelian groups , Automorphisms , Inner automorphism and Cayley's theorem.

Course Outcomes (CO)

K1	CO1	Finding whether a given abstract structure is a group or a ring.
K2	CO2	Understanding the elementary concepts of rings and fields and compare the similarities and differences between these concepts and those of group theory.
К3	CO3	Applying the concepts of homomorphism and isomorphism for comparing the algebraic features of mathematical systems in groups, rings and fields
K4	CO4	Examining the results from group theory to study the properties of rings and fields and to possess the ability to work within their algebraic structures.

Syllabus

UNIT I (16 Hours)

Sets – mappings* – Relations and binary operations – Groups: Abelian group, Symmetric group Definitions and Examples.

UNIT II (18 Hours)

 ${\bf Subgroups*-Cyclic\ subgroup\ -\ Index\ of\ a\ group-Order\ of\ an\ element-Fermat\ theorem\ -\ A\ Counting\ Principle\ -\ Normal\ Subgroups\ and\ Quotient\ Groups.}$

UNIT III (19 Hours)

Homomorphisms – Cauchy's theorem for Abelian groups – Sylow's theorem for Abelian groups Automorphisms – Inner automorphism - Cayley's theorem.

UNIT IV (18 Hours)

Rings: Definition and Examples –Some Special Classes of Rings – Commutative ring – Field – Integral domain - Homomorphisms of Rings.

UNIT V (19 Hours)

 $Ideals \ and \ Quotient \ Rings-Maximal \ ideal \ \hbox{-} \ The \ field \ of \ Quotients \ of \ an \ Integral \ Domain.$

* denotes Self study (Questions may be taken from the self study portions also).

Teaching Methods

Chalk and Talk/Power point Presentations/ Group discussions/ Seminar/ Assignment

Text Book

I.N. Herstein, Topics in Algebra, John Wiley & Sons, New York, 2003.

Unit I	Chapter 1	Sections 1.1 to 1.3,
	Chapter 2	Sections 2.1 to 2.3
Unit II	Chapter 2	Sections 2.4 to 2.6
Unit III	Chapter 2	Sections 2.7 to 2.9
Unit IV	Chapter 3	Sections 3.1 to 3.3
Unit V	Chapter 3	Sections 3.4 to 3.6.

Reference Books

- 1. Surjeet Singh and Qazi Zameeruddin, Modern Algebra, Vikas Publishing house, 1992.
- 2. A.R. Vasishtha, Modern Algebra, Krishna Prakashan Mandir, Meerut, 1994 95

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	S	Н	S	M
CO2	S	Н	M	S	Н
CO3	M	S	S	Н	M
CO4	S	Н	S	Н	Н

Programm	e Code : 02	B.Sc Mathematics		
Course Code:	18UMA512	Core paper 12 - Programming in C		
Batch Semester		Hours / Week	Total Hours	Credits
2018-2021	V	4	60	3

Course Objectives

- 1. To understand the C Programming language.
- 2. To learn the concept of control statements, one dimensional and two dimensional arrays.
- 3. To solve the mathematical problems using C Programs.

Course Outcomes (CO)

K1	CO1	Remembering the functioning of C Programming.
K2	CO2	Understanding the various features of a C Program.
K3	CO3	Applying the operators and functions to solve Mathematical problems.
K4	CO4	Analyzing the accuracy of the results obtained.

Syllabus

UNIT I (12 Hours)

Overview of C: Importance of C - **Sample C Programs*** - Basic structure of C programs- Programming style - Executing a C Program.

Constants, Variables and Data types: Character set - C tokens - Keywords and identifiers - Constants - Variables - Data types - Declaration of variables - Assigning values to variables - Defining symbolic constants.

UNIT II (12 Hours)

Operators and Expression: Arithmetic Operators – Relational Operators – Logical Operators – Assignment Operators- Increment and Decrement Operators – Conditional Operator – Bitwise Operators- Special Operators – Arithmetic expressions – Evaluation of expressions – Precedence of arithmetic operators – Some computational problems – Type conversions in expressions – Operator precedence and associativity* – Mathematical functions*.

UNIT III (12 Hours)

Managing Input and Output Operations: Reading a character – Writing a character – Formatted Input – Formatted Output.

UNIT IV (12 Hours)

Decision Making and Branching: Decision making with IF statement – Simple IF statement – The IF ... ELSE statement – Nesting of IF ... ELSE statements – The ELSE IF ladder – The Switch statement – The ?: operator- The GOTO statement.

UNIT V (12 Hours)

Decision Making and Looping: The WHILE statement – The DO statement – The FOR statement – Jumps in loops.

Array: Introduction-One-dimensional arrays-Declaration of one-dimensional arrays-Initialization of one-dimensional arrays-Two dimensional arrays- Initializing two dimensional arrays.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Books

1. E. Balagurusamy, Programming in ANSI C, 7th edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2017.

Unit I	Chapter 1	Page No 1 – 14
	Chapter 2	Page No 22 – 43
Unit II	Chapter 3	Page No 51 – 75
Unit III	Chapter 4	Page No 81 – 106
Unit IV	Chapter 5	Page No 111 – 141
Unit V	Chapter 6	Page No 149 – 181
	Chapter 7	Page No 189 – 212

Reference Books

- 1. Kris A.Jamsa, Programming in C, Gazlgotia Publication, New Delhi 1990.
- 2. V.Rajaraman, Computer Programming in C, Prentice Hall of India, New Delhi, 1994.
- 3. Stephen .G Kochan, Programming in C, CBS Publishers, New Delhi, 1991.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	M	M	Н	M
CO2	S	M	S	S	M
CO3	S	S	S	S	Н
CO4	Н	S	Н	S	Н

18UMA5CL

Programme	e Code : 02		B.Sc Mathematics	}
Course Code:	18UMA5CL	Core Practical 1 - Programming in C		
Batch Semester		Hours / Week	Total Hours	Credits
2018-2021	V	2	30	2

Course Objectives

- 1. To provide practical experience for the students to understand the structure of a C Program.
- 2. To enrich the knowledge in solving mathematical problems using C Programs.
- 3. To train the students to write C Programs on their own.

Course Outcomes (CO)

К3	CO1	Applying the various operators and functions of C language in Programs
K4	CO2	Analyzing the various data types and formatting features available in C language
K5	CO3	Evaluating the mathematical problems using C Programs

List of Practical

- 1. Program to identify Prime numbers.
- 2. Program to identify Perfect numbers.
- 3. Program to find Armstrong number.
- 4. Program to identify Palindrome number.
- 5. Program to find the Factorial of a number.
- 6. Program to frame Fibonacci series.
- 7. Program to find the Sum of digits of a number.

18UMA5CL

- 8. Program to find the Solution of the quadratic equation.
- 9. Program to convert a decimal number into a binary number.
- 10. Program to find the arithmetic mean of given numbers.
- 11. Program to find the sum and difference of two matrices.
- 12. Program to find the multiplication of two matrices.

<u>Distribution of Marks in ESE</u>		<u>CI</u>	<u>A</u>		
Experiment	:	50	CIA Practical	:	25
Record	:	10	Exam		
			Attendance	:	5
	Total	60	Observation Note	:	10
			book		
			Total		40

To be awarded jointly by the internal and external examiners.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	Н	Н	S
CO2	S	M	S	M	M
CO3	S	S	Н	S	Н

18UMA5S3

Programm	e Code : 02		B.Sc Mathematics	}	
Course Code:18UMA5S3		Skill Based Subject 3 Fundamentals of LaTeX -			
		Theory			
Batch	Semester	Hours / Week Total Hours Credits			
2018-2021	V	2 30 3			

Course Objectives

- 1. To enable the students to understand the concept of *LaTeX* for typesetting and formatting of mathematical and scientific documents.
- 2. To apply the array techniques for creating Matrices.
- 3. To use the preamble of *LaTeX* file to define document class and layout options.

Course Outcomes (CO)

K1	CO1	Tells the advantages of LaTeX.
K2	CO2	Understanding the scientific document layout.
K3	CO3	Construct the document which contains more complicated
		Mathematical formulas by using LaTeX.
K4	CO4	Analyzing the basic structures of a different journal article.

UNIT I (6 Hours)

Introduction: Basic components of LaTeX document-error messages-typing LaTeX commands-advantages - **text formatting*** - basics of LaTeX file.

UNIT II (6 Hours)

Command names and arguments - environment - special charaters - Fragile commands

Document layout and organization: Document class - page style - parts of the document-table of contents.

UNIT III (6 Hours)

Displayed text: Changing font-centering and indenting - lists-generalized lists - Theorem like declarations-tables.

UNIT IV (6 Hours)

Mathematical formulas: Mathematical environment - main elements of math mode - mathematical symbols.

18UMA5S3

UNIT V (6 Hours)

Additional elements: Ordinary text within a formula – matrices and arrays-lines above and below formulas-stacked symbols - multiple equations - fine tuning mathematics-selecting font size in formulas - manual sizing of bracket symbols.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Book

Fundamentals of LaTeX for Mathematicians, physicist and engineers, Velusamy Kavitha and Mani Mallikaarjunan, Lambert Academic Publishing, Germany, 2013.

Unit I	Chapter 1	Sections 1.1 to 1.6 and 1.8
Unit II	Chapter 2	Sections 2.1, 2.2, 2.5, 2.6
	Chapter 3	Sections 3.1 to 3.4
Unit III	Chapter 4	Sections 4.1 to 4.4 and 4.8
Unit IV	Chapter 6	Sections 6.1, 6.2
Unit V	Chapter 6	Sections 6.4, 6.5

Reference Book

H.Kopka and P.W.Daly, A guide to LaTeX, Third Edition, Addison Wesely, London, 1999

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	M	S	Н
CO2	Н	M	S	Н	S
CO3	M	S	Н	S	Н
CO4	S	Н	S	Н	M

Programm	e Code: 02	B.Sc Mathematics		
Course Code:	18UMA613	Core Paper 13 - Real Analysis-II		
Batch Semester		Hours / Week	Total Hours	Credits
2018-2021	VI	6	90	4

Course Objectives

- 1. To understand the concept of functions, Connectedness, uniform continuity, fixed point and related theorems.
- 2. To find the Derivatives and related theorems and Functions of bounded variations and related theorems.
- 3. To enable to know about the Reimann- Stieltjes integrals and its properties.

Course Outcomes (CO)

K1	CO1	Remembering the concept of derivatives, bounded variation.
K2	CO2	Understanding the concepts of connectedness
К3	CO3	Applying the differentiability of real functions in related theorems.
K4	CO4	Analyzing the Riemann Integrals.

Syllabus

UNIT I (18 Hours)

Examples of continuous functions –continuity and inverse images of open or closed sets –functions continuous on compact sets –Topological mappings –Bolzano's theorem.

UNIT II (18 Hours)

Connectedness –components of a metric space – Uniform continuity : Uniform continuity and compact sets –fixed point theorem for contractions –monotonic functions.

UNIT III (18 Hours)

Definition of derivative —Derivative and continuity —**Algebra of derivatives*** — the chain rule —one sided derivatives and infinite derivatives —functions with non-zero derivatives —zero derivatives and local extrema —Roll's theorem —The mean value theorem for derivatives — Taylor's formula with remainder.

UNIT IV (18 Hours)

Properties of monotonic functions **–functions of bounded variation*** –total Variation – additive properties of total variation on (a, x) as a function of x – functions of bounded variation expressed as the difference of increasing functions –continuous functions of bounded variation.

UNIT V (18 Hours)

The Riemann – Stieltjes integral : Introduction –Notation –The definition of Riemann – Stieltjes integral –linear properties –Integration by parts –change of variable in a Riemann – stieltjes integral –Reduction to a Riemann integral.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Book

Tom. M. APOSTOL, Mathematical Analysis, 2nd ed., Addison-Wisely, Narosa Publishing Company, Chennai, 1990.

Unit I	Chapter 4	Sections 4.11 to 4.15
Unit II	Chapter 4	Sections 4.16, 4.17, 4.19, 4.20, 4.21, 4.23
Unit III	Chapter 5	Sections 5.2 to 5.10 and 5.12
Unit IV	Chapter 6	Sections 6.2 to 6.8
Unit V	Chapter 7	Sections 7.1 to 7.7

Reference Books

- 1. R.R. Goldberg, Methods of Real Analysis, NY, John Wiley, New York 1976.
- 2. G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill, New York, 1963.
- 3. G. Birkhoff and MacLane, A survey of Modern Algebra, 3rd Edition, Macmillian, New York, 1965.
- 4. J.N. Sharma and A.R. Vasistha, Real Analysis, Krishna Prakashan Media (P) Ltd, 1997.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	Н	S	Н
CO2	Н	S	S	Н	S
CO3	S	Н	M	S	Н
CO4	Н	Н	S	Н	S

Programm	e Code: 02		B.Sc Mathematics	
Course Code:18UMA614		Core paper 14 - Complex Analysis – II		
Batch Semester 2018-2021 VI		Hours / Week	Total Hours 90	Credits 4

Course Objectives

- 1. To learn about Taylor's Series and Laurent's series.
- 2. To understand the concept of singularities and residues.
- 3. To study the concept of definite integrals.

Course Outcomes (CO)

K1	CO1	Recalling the fundamental theorem of algebra in complex number system.
K2	CO2	Illustrating the Taylor's and Laurent's expansions of simple functions.
К3	CO3	Applying Laurent's series for isolated singularities and determine residues.
K4	CO4	Analyzing the concepts of residues and residue theorem to compute real definite integrals using contours.

Syllabus

UNIT I (18 Hours)

Zeros of a function – **Cauchy's Inequality*** – Lioville's theorem –Fundamental theorem of algebra –Maximum modulus theorem –Gauss mean value theorem. Mean value theorem of a harmonic function on a circle.

UNIT II (18 Hours)

Taylor's and Laurent's series – Taylor series – Laurent series.

UNIT III (18 Hours)

Singularities and Residues: **Singularities*** - Isolated singularities — Removable Singularity-Pole Essential singularity. Behaviour of a function at an isolated singularity. Residues: Residue — Calculus of residues- Residue theorem.

UNIT IV (18 Hours)

Real definite integrals: Evaluation using the calculus of residues:

- (i) Integrals of the form $\int_{0}^{2\pi} f(\cos\theta, \sin\theta)d\theta$ where f is a rational function in $\cos\theta$ and
- $\sin\theta$ Integral with $-\infty$ and $+\infty$ as lower and upper limits with the following integrals:
- ii) P(x)/Q(x) where the degree of Q(x) exceeds that of P(x) at least 2.
- iii) (sin ax).f(x), (cos ax).f(x), where a>0 and f(z) \rightarrow 0 as z \rightarrow ∞ and f(z) does not have a pole on the real axis.

UNIT V (18 Hours)

Meromorphic functions: Meromorphic functions – Theorem on number of zeros minus number of poles – Principle of argument – Rouche's theorem – Fundamental theorem of algebra – Problems (Examples) related to these theorems.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk/PowerPoint presentation/ Seminar/ Quiz/ Discussion/ Assignment

Text Book

P. Duraipandian, Laxmi Duraipandian and D. Muhilan Complex analysis, Emerald Publishers, Chennai –2, 1997.

Unit I	Chapter 8	Sections 8.10, 8.11 (Excluding theorem 8.19)
Unit II	Chapter 9	Sections 9.1, 9.3, Relevant examples in 9.13
Unit III	Chapter 9	Sections 9.5 to 9.10, Simple examples in 9.13
	Chapter 10	Sections 10.1, 10.2 Simple examples in 10.4
Unit IV	Chapter 10	Sections 10.3 Type I, II, III, (Excluding type IV)
		Relevant Problems in 10.4.
Unit V	Chapter 11	Sections 11.1 Theorems 11.1,11.2,11.3 and 11.4 (Omitting theorems 11.5 and 11.6), 11.2, Relevant examples in 11.3

Reference Books

- 1. Churchill and Others, Complex Variable and Applications, Tata Mecgrow Hill Publishing Company Ltd, 1974.
- Santhinarayan , Theory of functions of Complex Variable, S.Chand and Company, Meerut, 1995.
- 3. Tyagi B.S , Functions of Complex Variable, 17th Edition, Pragati Prakasham Publishing Company Ltd, Meerut, 1992-93.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	M	Н	S
CO2	Н	S	M	M	S
CO3	M	M	S	S	Н
CO4	S	Н	Н	S	M

Programme	e Code : 02	B.Sc Mathematics		
Course Code:	18UMA615	Core Paper 15 - Modern Algebra II		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	VI	6	90	4

Course Objectives

- 1. To know the concepts of Hermitian and Skew-Hermitian Matrices, Orthogonal and Unitary Matrices, Characteristic Roots and Characteristic Vectors of a Square Matrix.
- 2. To enable the concepts of linear independence, basis and dimension of a vector spaces.
- 3. To understand the concept of linear transformation and matrices which will enrich the knowledge of logical thinking.

Course Outcomes (CO)

K1	CO1	Recalling the basic concepts of matrices, rank of a Matrix
K2	CO2	Understanding the basic ideas of vector spaces and the concepts of linear span, linear independence, basis, dimension and to apply these concepts to vector spaces, subspaces and inner product spaces.
К3	CO3	Applying the principles of matrix algebra to linear transformations and compute their rank.
K4	CO4	Examining whether the given set of vector is linearly independent or linearly dependent .

Syllabus

UNIT I (16 Hours)

Matrices: Introduction – **Addition and Scalar Multiplication of Matrices*** – **Product of Matrices*** – Transpose of a Matrix – Matrix Inverse – Symmetric and Skew – Symmetric Matrices.

UNIT II (16 Hours)

Hermitian and Skew-Hermitian Matrices – Orthogonal and Unitary Matrices – Rank of a Matrix –Characteristic Roots and Characteristic Vectors of a Square Matrix.

UNIT III (20 Hours)

Vector space: Elementary Basic Concepts – Subspace of a Vector space – Homomorphism – Isomorphism – Internal and External direct sums – Linear span – Linear Independence and Bases.

UNIT IV (20 Hours)

Dual Spaces – Annihilator of a subspace – Inner Product Spaces – Norm of a Vector – Orthogonal Vectors - Orthogonal Complement of a subspace – Orthonormal set.

UNIT V (18 Hours)

Linear Transformations: Algebra of Linear Transformations – Regular, Singular Transformations – Range of T – Rank of T – Characteristic Roots – Characteristic Vectors - Matrices.

* Self Study (Questions may be asked from these portions also)

Text Books

1. R.Balakrishnan and M. Ramabadran, Modern Algebra, Vikas Publishing House Pvt. Ltd, New Delhi, (Second Revised Edition 1994) (For Units I & II)

Unit I	Chapter 1	Sections 1.1 to 1.3, 1.5 to 1.7
Unit II	Chapter 1	Sections 1.8 and 1.9
	Chapter 2	Section 2.9
	Chanter 3	Section 3.9

2. I.N. Herstein, Topics in Algebra, John Wiley & Sons, New York, 2003.

(For Units III, IV & V)

Unit III	Chapter 4	Sections 4.1 and 4.2
Unit IV	Chapter 4	Sections 4.3 and 4.4
Unit V	Chapter 6	Sections 6.1, 6.2 and 6.3

Reference Books

- 1. Surjeet Singh and Qazi Zameeruddin, Modern Algebra, Vikas Publishing house, 1992.
- 2. A.R. Vasishtha, Modern Algebra, Krishna Prakashan Mandir, Meerut, 1994 95.
- 3. Seymour Lipschutz and Marc Lipson, Linear Algebra, 3rd Edition, McGraw Hill, 2001.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	S	Н	Н
CO2	Н	S	S	Н	M
CO3	M	S	Н	Н	S
CO4	S	Н	S	Н	S

18UMA6S4

Programm	e Code : 02	B.Sc Mathematics		
Course Code:18UMA6S4		Skill Based Subject 4 Fundamentals of LaTeX-		
		Practical		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	VI	2	30	3

Course Objectives

- 1. LaTeX is a typewriting system that is extremely useful for typing and formatting scientific documents.
- 2. Typing Mathematical equations is very intuitive and easy in LaTeX.
- 3. This practical subject is Job and Skill oriented for the students.

Course Outcomes(CO)

K3	CO1	Constructing the letters, dissertation, curriculum vitae and other
		documents using LaTeX.
K4	CO2	Analyzing the LaTeX software for the preparation of question
		papers and tables.
K5	CO3	Choosing LaTeX for typing Mathematical equation, case
		statements and Matrices.

List of Practical

- 1. Using LaTeX, type a document in different ways (Left, Right, Center, Justify, changing text color, sections, subsections, abstract, bibliography, citations of references etc,.)
- 2. Using LaTeX, prepare a letter to get permission from the Secretary, Kongunadu Arts and Science College, Coimbatore 641 029 for organizing the educational tour through proper channel.
- 3. Using LaTeX, type your own Curriculum Vitae.
- 4. Using LaTeX, type a question paper for the subject Modern Algebra as per the following pattern.

18UMA6S4

Kongunadu Arts and Science College(Autonomous) Coimbatore-641029 Department of Mathematics

CIA TEST-II

Class & Major:	I M.Sc. Mathematics
Title of the Paper:	Modern Algebra
Date & Session:	DD/MM/YYYY 2.00pm-5.00pm AN
Time: 3hrs	Max.marks:75
	Answer ALL Questions
	SECTION-A(10×1=10 Marks)
Choose the correct answer:	

1.

a) b) d) c)

SECTION-B(5×5=25 Marks)

11.a).

(or)

b).

SECTION-C(5×8=40 Marks)

16.a).

(or)

b).

5. Using LaTeX, type the following table.

	Item		Budget				
		1st Year	2 nd Year	3 rd Year	Total		
A	Recurring	JRF	JRF	SRF			
1	Salaries/Wages	1,65,600	1,65,600	1,93,200	5,24,400		
2	Consumables	50,000	50,000	50,000	1,50,000		
3	Travel	75,000	75,000	75,000	2,25,000		
4	Other costs						
(i)	Books/Journals	75,000	75,000	75,000	2,25,000		
(ii)	Contingency	50,000	50,000	50,000	1,50,000		
В	Equipments	1,50,000	-	-	1,50,000		
	Grand Total						
	(A+B)				14,24,400		
	Total FEC*				NIL		
	Over head Charg	Over head Charge (20% of the grand total)					
		Tota	al		17,09,280		

6. Using LaTeX, type the following equation

$$\int_0^\infty e^{-\rho} \rho^{2l} \left[L_{n+l}^{2l+1}(\rho) \right]^2 \rho^2 d\rho = \frac{2n[(n+l)!]^3}{(n-l-1)!}$$

7. Using LaTeX, type the following Case Statements.

(a)
$$x_{\lambda} = \begin{cases} x & \text{if } \lambda \text{ is an eigen value;} \\ -x & \text{if } -\lambda \text{ is an eigen value;} \\ 0 & \text{otherwise.} \end{cases}$$

(b)
$$|x| =$$

$$\begin{cases} x & \text{if } x \ge 0; \\ -x & \text{if } x < 0; \\ 0 & \text{otherwise.} \end{cases}$$

8. Using LaTeX, type the following Matrices

$$(a) \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

(b)
$$B = \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \end{pmatrix} \begin{pmatrix} (0.6,0.2) & (0.6,0.2) & (0.3,0.4) \\ (0.3,0.5) & (0.2,0.6) & (0.7,0.2) \\ (0.1,0.8) & (0.2,0.7) & (0.7,0.2) \\ (0.4,0.5) & (0.7,0.2) & (0.3,0.4) \\ (0.1.0.7) & (0.1.0.8) & (0.2.0.7) \end{pmatrix}$$

$$(c) \begin{cases} a & b & c \\ d & e & f \\ a & h & i \end{cases}$$

9. Using LaTeX, type the following complicated mathematical structures.

(a)
$$\binom{m+n}{m} = \frac{(m+n)!}{m!n!} = \frac{\overbrace{(m+n)(m+n-1)...(n+1)}^{m(m+n)(m+n-1)...(n+1)}}{\underbrace{m(m-1)...1}_{m \ factors}}$$

(b)
$$1+2+\cdots+n = \frac{1}{2} \left((1+2+\cdots+n) + (n+\cdots+2+1) \right)$$

$$= \frac{1}{2} \underbrace{(n+1) + (n+1) + \cdots + (n+1)}_{n \ copies}$$

$$= \frac{n(n+1)}{2}$$

10. Using LaTeX, convert an .tex file into power point presentation.

18UMA6S4

Distribution of Marks in CIA

CIA Practical Exam: 25 Attendance: 5 Observation Note Book: 10 Total: 40

Distribution of Marks in ESE

Experiment: 50 Record: 10 Total: 60

To be awarded jointly by the internal and external examiners.

Mapping

PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	S	M	Н	S
CO2	S	M	Н	S	Н
CO3	M	Н	S	Н	S

Programme Code : 02	B.Sc Mathematics			
Major Elective Paper - DISCRETE MATHEMATICS AND AUTOMATA THEORY				
Batch	Hours / Week	Total Hours	Credits	
2018-2021	_	7.5	_	

- 1 To understand mathematical foundations to create mathematical arguments.
- 2 To enable to know how lattices and Boolean algebra are used as mathematical models of network systems.
- 3. To know about Automata Theory and its applications.

Course Outcomes (CO)

K1	CO1	Remembering the concepts of Mathematical logic.	
K2	CO2	Explaining the implication problems using truth table, replacement	
		process and rules of inference.	
K3	CO3	Solving normal forms of given logical expression.	
K4	CO4	Analyzing Karnaugh map for simplifying the Boolean expression.	

Syllabus

UNIT I (15 Hours)

Logic – introduction – T F – statements – Connectives - atomic and compound statements – well formed formulae* – Truth Table of a formula – Tautology – Tautological implications and equivalence of formulae – Replacement process.

UNIT II (15 Hours)

Functionally complete sets of connectives and duality law - Normal forms - Principal normal forms - Theory of inference - indirect method of proof - open statements - Quantifiers.

UNIT III (15 Hours)

Lattices – Some properties of lattices – New lattices.

UNIT IV (15 Hours)

Boolean algebra – **Boolean Polynomials*** – Karnaugh map (K - map for 5 variables and 6 variables are not included).

UNIT V (15 Hours)

Theory of Automata – definition – description – transition systems – properties – acceptability of a string by a finite automaton – Non deterministic finite state machines - the equivalence of DFA and NDFA - Mealy and Moore models

* denotes self study (Questions may be asked from these portions also)

Teaching methods

Chalk and Talk/Power point Presentations, Group discussions, Seminar, Assignment

Text Books

1. M.K Venkataraman, N.Sridharan and N.Chandrasekaran, Discrete mathematics -

The National Publish Company, New Delhi, 2000.

Unit I Chapter 9 Sections 1, 2, 3, 4, 5, 6, 7, 8, 9
Unit II Chapter 9 Sections 10, 11, 12, 13, 14, 15
Unit III Chapter 10 Sections 1,2,3
Unit IV Chapter 10 Sections 5, 6, 7

2. K.L.P Mishra & N.Chandrasekaran, Theory of computer sciences, Second

Edition, Prentice Hall of India Private Ltd., 2001

Unit-V Chapter 2 Sections 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8

Reference Books

- 1. J.P.Tremblay and R.Manohar, Discrete Mathematical Structures with Applications to Computer Science, McGraw Hill Book Company, Singapore, 1987.
- C.L.Liu, Elements of Discrete Mathematics McGraw Hill Book Company,
 Singapore, 1985
- 3. Alan Doerr and Kenneth Levasseur, Applied Discrete Structures for Computer Science, 1st Edition, Galgotia Publications Pvt., Ltd, New Delhi 2002.
- 4. R.M.Somasundaram, Discrete Mathematical Structures, Prentice Hall of India Pvt., Ltd, New Delhi, 2003.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	S	M	M
CO2	Н	S	Н	M	M
CO3	S	Н	S	M	M
CO4	M	S	M	Н	M

Programme Code: 02		B.Sc Mathematics			
Major Elective Paper OPERATIONS RESEARCH					
Batch	Hours / Week	Total Hours	Credits		
2018-2021	5	75	5		

- 1. To introduce certain OR techniques such as LPP, Transportation problems, Assignment problems, Game theory and Inventory.
- 2. To help the students to develop logical reasoning.
- 3. To apply mathematical tools to managerial and real life problems.

Course Outcomes (CO)

K1	CO1	Remembering the concept of linear programming problem using Simplex Method.
K2	CO2	Understanding the rules of game theory for solving games and summarize the concept of inventory control.
К3	CO3	Applying the notions of linear programming in solving transportation problems and Assignment Problem.
K4	CO4	Analyzing the concept of CPM & PERT

Syllabus

UNIT I (18 Hours)

Linear programming Problem – Introduction – Mathematical formulation of the problem – Graphical solution method – General Linear Programming Problem – The Simplex method – **Two** phase simplex method* – Charnes method of penalties.

UNIT II (13 Hours)

Transportation problems - The Assignment and the Travelling Salesman Problem .

UNIT III (15 Hours)

Games and Strategies – Introduction – Two person zero sum game – The maximum and minimum principle games – Games without saddle points- mixed strategies – Graphical method of 2xn and mx2 games-Dominance Property.

UNIT IV (17 Hours)

Inventory – Introduction – functions of inventory – cost associated with inventory – Economic order quantity – **Economic order problem with price breaks*.**

UNIT V (12 Hours)

Network scheduling by CPM and PERT- Resource Analysis in Network Scheduling.

* denotes self study (Questions may be asked from these portions also)

Teaching methods

Chalk and Talk/Power point Presentations, Group discussions, Seminar, Assignment

Text Book

1. Kantiswarup, P.K.Gupta and Man Mohan, Operations Research, 9th Thoroughly Revised Ed., Sultan Chand & Sons, New Delhi, 2001.

Unit I	Chapter 2	Sections 2.1, 2.2
	Chapter 3	Sections 3.1 to 3.4
	Chapter 4	Sections 4.1 to 4.3
Unit II	Chapter 10	Sections 10.1 to 10.13
	Chapter 11	Sections 11.1 to 11.6
Unit III	Chapter 17	Sections 17.1 to 17.7
Unit IV	Chapter 19	Sections 19.1 to 19.8
Unit V	Chapter 21	Sections 21.1 to 21.7
	Chapter 22	Sections 22.1 to 22.3

Reference Books

- 1. Prem Kumar Gupta and D.S.Hira, Problems in Operations Research, Chand and Company, New Delhi, 1998.
- 2. B.S.Goel and S.K.Mittal, Operations Research, 16th Edition, Pragathi Prakashan Publishers, Meerut, 1999.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	S	S	M
CO2	Н	S	Н	M	S
CO3	S	Н	S	Н	Н
CO4	M	S	M	Н	M

Programme Code: 02		B.Sc Mathematics			
Major Elective Paper - NUMERICAL METHODS					
Batch	Hours / Week	Total Hours	Credits		
2018-2021	5	75	5		

- 1. To solve algebraic and transcendental equations for finding roots using numerical methods.
- 2. To Solve simultaneous algebraic linear equations using various numerical methods
- 3. To know about finite differences and its uses to interpolate the values for equal and unequal intervals.

Course Outcomes (CO)

K1	CO1	Remembering various numerical methods for finding the solution of
		algebraic and transcendental equations.
K2	CO2	Demonstrating various numerical algorithms for solving simultaneous
		linear algebraic equations.
K3	CO3	Applying finite difference methods for interpolation.
K4	CO4	Analyzing the ordinary differential equations by using numerical methods.

Syllabus

UNIT I (15 Hours)

The numerical solution of algebraic and transcendental equations: The bisection method

-Method of successive Approximation -The method of false position - **Newton-Raphson**method*.

UNIT II (15 Hours)

Simultaneous linear algebraic equations: Direct methods: **Gauss elimination method*** - Gauss Jordan, Method of triangularisation. Inverse of a matrix using Gauss elimination method. Indirect method: Jacobi method of iteration – Gauss- Seidel method of iteration.

UNIT III (15 Hours)

Finite differences: First difference –Higher differences- Operators- Forward difference table- Backward difference table- Expression of any value of y in terms of y_n and the backward differences of y_n - Differences of a polynomial- Factorial polynomial.

UNIT IV (15 Hours)

Interpolation with equal intervals: Gregory – Newton's forward interpolation formula – Gregory –Newton's backward interpolation formula. Central difference interpolation: Gauss's forward interpolation Formula – Gauss's backward interpolation formula -Stirling's formula. Interpolation with unequal intervals: Divided differences - Newton's interpolation formula for unequal intervals - Lagrange's Interpolation formula –Inverse interpolation.

UNIT V (15 Hours)

Difference equations: Definition- Order and degree of a difference equation- Linear difference equation- To find complementary function of $f(E)y_x = \phi(x)$ - To find particular integral of $f(E)y_x = \phi(x)$.

* denotes self study (Questions may be asked from these portions also)

Teaching methods

Chalk and Talk/Power point Presentations, Group discussions, Seminar, Assignment

Text Book

P.Kandasamy, K.Thilagavathi and K.Gunavathi, Numerical Methods, S.Chand & Company Ltd, New Delhi, 2012.

Unit I	Chapter III	Sections 3.1 - 3.4
Unit II	Chapter IV	Sections 4.1- 4.4, 4.7- 4.9
Unit III	Chapter V	Sections 5.1 -5.4
Unit IV	Chapter VI	Sections 6.1-6.3
	Chapter VII	Sections 7.1-7.5
	Chapter VIII	Sections 8.1 -8. 5, 8.7-8.8
Unit V	Chapter X	Sections 10.1 -10.4, 10.6

Reference Books

- M.K. Venkataraman, Numerical Methods in Science and Engineering, NPC, 5th Edition, 2001.
- 2. M.K.Jain, S.R.K. Iyengar and R.K.Jain, Numerical Methods for Scientific and Engineering Computations, New Age International publishers, New Delhi, 2004.
- 3. A.Singaravelu, Numerical Methods, Meenakshi Publications, Arpakkam, 2002.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	S	Н	S
CO2	Н	S	Н	S	S
CO3	S	Н	S	Н	M
CO4	M	Н	M	S	Н

Programme Code: 02		B.Sc Mathematics			
Major Elective Paper - LINEAR ALGEBRA					
Batch	Credits				
2018-2021	5	75	5		

- 1. Represent mathematical information and communicate mathematical reasoning symbolically and verbally.
- 2. Apply mathematical methods involving arithmetic, algebra, geometry, and graphs to solve problems.
- 3. Interpret and analyze numerical data, mathematical concepts, and identify patterns to formulate and validate reasoning

Course Outcomes(CO)

K1	CO1	Remember to write the system of linear equations in terms of matrix
		equations
K2	CO2	Understanding the systems of linear equations and matrix equations to
		determine linear dependency or independency.
K3	CO3	Solve problems that can be modeled by systems of linear equations.
K4	CO4	Examining the solution set of a system of linear equations

Syllabus

UNIT I (15 Hours)

Elementary Canonical Forms : **Characteristic values – Annihilating polynomials*** – Invariant subspaces.

UNIT II (15 Hours)

Elementary canonical forms: Direct – sum decompositions – Invariant direct sums- The primary decomposition theorem.

UNIT III (15 Hours)

The Rational and Jordan forms: Cyclic subspaces and Annihilators – cyclic decompositions and the Rational Form.

UNIT IV (15 Hours)

The Rational and Jordan forms: The Jordan form computation of invariant factors.

UNIT V (15 Hours)

Bilinear forms: Bilinear forms – symmetric Bilinear forms.

* denotes self study (Questions may be asked from these portions also)

Teaching methods

Chalk and Talk/Power point Presentations/Group discussions/Seminar /Assignment

Text Book

Kenneth Hoffman and Ray Kunze, Linear Algebra, 2nd Edition, Prentice Hall of India Pvt., Ltd., New Delhi, 1996.

Unit I	Chapter 6	Sections	6.1 to 6.4
Unit II	Chapter 6	Sections	6.6 to 6.8
Unit III	Chapter 7	Sections	7.1, 7.2
Unit IV	Chapter 7	Sections	7.3 , 7.4
Unit V	Chapter 10	Sections	10.1, 10.2

Reference Books

- 1. Schaum's Outline series, Linear Algebra, McGraw Hill Book Company, New Delhi.
- 2. Dr.S.N.Goel, Linear Algebra, 4th Edition, Kadar Nath, Ram Nath, Meerut.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	M	Н	S	M	S
CO2	Н	S	M	Н	S
CO3	Н	M	S	M	Н
CO4	S	Н	S	Н	M

Programme Code : 02	B.Sc Mathematics				
Major Elective Paper - BUSINESS APPLICATION SOFTWARE					
Batch	Hours / Week Total Hours Credits				
2018-2021	5	75	5		

- 1. To enable the students to acquire knowledge about some advanced topics in Software like windows 95.
- 2. To work in Microsoft word, Microsoft Excel and Microsoft Access.
- 3. To make presentations using power point.

Course Outcomes(CO)

K1	CO1	Finding word processing techniques to produce a well-designed and
		esthetical pleasing formal document.
K2	CO2	Inferring to use standard spread sheet features to produce a representation
		and analysis of numerical data.
K3	CO3	Building charts, template and saving data, modify animation, sounds and
		art in Microsoft power point and an overview on Microsoft access.
K4	CO4	Analyzing and respond to an ethical issue related to computer usage.

Syllabus

UNIT I (15 Hours)

Windows 95 : Introduction to windows 95 – Overview – Basic skills – disk organization – applications.

UNIT II (15 Hours)

Microsoft Word: Word processing overview – creating and editing documents – formatting document – creating report and new letter – creating table and merging document – creating web pages.

UNIT III (15 Hours)

Microsoft Excel : Spread sheet overview – Crating work sheet* – managing and analyzing complex worksheet – creating charts – creating from template – sharing data between applications.

UNIT IV (15 Hours)

Microsoft Access: Database overview – creating database – modifying table and creating form – filtering and querying tables – creating reports and mailing labels – sahring information between applications.

UNIT V (15 Hours)

Microsoft Power Point : Features of Power Point – Text and formats* – Animation, Art and sound – Making the presentation. Template and Reusability – File Management.

* denotes self study (Questions may be asked from these portions also)

Teaching methods

Chalk and Talk/Power point Presentations/Group discussions/Seminar/ Assignment

Text Books

- 1. Timothy J.O. Leary and Linda I.O. Leary, Microsoft Office 97, Irwin / McGraw Hill, 1998.
- Lonnie E.Moseley and David M.Boodey, Microsoft Office 97, BPB Publications, 1997.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	M	Н	S	S
CO2	Н	M	S	Н	S
CO3	Н	M	S	Н	S
CO4	S	Н	S	S	Н

Programme Code: 02		B.Sc Mathematics		
Major Elective Paper - ASTRONOMY				
Batch	Hours / Week	Total Hours	Credits	
2018-2021	5	75	5	

- 1. To acquire the knowledge about the celestial objects and planets.
- 2. Develop skills to design observing projects with research telescopes and projects drawing upon data in the literature and in archives.
- 3. To be familiar with the appearance of a range of common astronomical objects, such as asteroids, comets, satellites, planets, stars, and galaxies.

Course Outcomes(CO)

K1	CO1	Defining about the observed properties of physical systems that comprise
		the known universe.
K2	CO2	Demonstrate their ability to read, understand, and critically analyze the
		astronomical/physical concepts
K3	CO3	Applying their physics and mathematical skills to problems in the areas of
		planetary science.
K4	CO4	Analyze to draw valid scientific conclusions and communicate those
		conclusions in a clear and articulate manner.

Syllabus

UNIT I (15 Hours)

Celestial sphere, Diurnal Motion – Celestial Co-ordinates.

UNIT II (15 Hours)

The Earth: **Zones of Earth*** – Terrestrial Latitudes and Longitudes – Dip of Horizon – Twilight.

UNIT III (15 Hours)

Refraction.

UNIT IV (15 Hours)

Kepler's laws*, seasons – calendar.

UNIT V (15 Hours)

The moon – eclipses.

* denotes self study (Questions may be asked from these portions also)

Teaching methods

Chalk and Talk/Power point Presentations/Group discussions/Seminar /Assignment

Text Book

S.Kumaravelu and Susheela Kumaravelu, Astronomy for Degree classes, Rainbow Printers, Nagercoil, 2000.

Unit I	Chapter II	Sections	39 to 79
Unit II	Chapter III	Sections	1, 2, 5, 6
Unit III	Chapter IV		
Unit IV	Chapter VI		
	Chapter VII	Sections	2, 3
Unit V	Chapter XII		
	Chapter XIII.		

Reference Books

 V.B.Bhatia , Text book for Astronomy and Astrophysics with elements of Cosmology, 2nd Edition, Narosa Publishing House, New Delhi, 2001.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	M	S	Н	S
CO2	M	S	Н	S	Н
CO3	S	Н	S	Н	M
CO4	Н	S	M	M	S

Programme Code: 02	B.Sc Mathematics			
Major Electiv	e Paper FUZZY MA	ATHEMATICS		
Batch	Hours / Week	Total Hours	Credits	
2018-2021	5	75	5	

- 1. To know the basic definitions of fuzzy set theory.
- 2. To know the fundamentals of fuzzy Algebra.
- 3. To know the applications of fuzzy Technology.

Course Outcomes(CO)

K1	CO1	Remembering the basic concepts of Boolean algebra.
K2	CO2	Understanding the concepts of fuzzy sets.
K3	CO3	Identifying the concepts of Algebra of fuzzy relations and logic
		connectives.
K4	CO4	Analyzing fuzzy subgroup and Preimage of subgroupoid.

Syllabus

UNIT I (15 Hours)

Introduction- Fuzzy subsets- Lattices and Boolean Algebras- L fuzzy sets-operations on fuzzy – *level sets – properties of fuzzy subsets.

UNIT II (15 Hours)

Algebraic product and sum of two fuzzy subsets-properties satisfied by Addition and product-Cartesian product of fuzzy subsets

UNIT III (15 Hours)

Introduction- Algebra of fuzzy relations-logic-connectives.

UNIT IV (15 Hours)

Some more connectives-Introduction-fuzzy subgroup-homomorphic image and Preimage of subgroupoid.

UNIT V (15 Hours)

Fuzzy invariant subgroups-fuzzy subrings.

* denotes self study (Questions may be asked from these portions also)

Teaching methods

Chalk and Talk/Power point Presentations/Group discussions/Seminar /Assignment

Text Book

S. Nanda and N. R. Das Fuzzy Mathematical concepts, Narosa Publishing House, New Delhi, 2010.

Reference Books

- M.Ganesh, Introduction to Fuzzy Sets & Fuzzy Logic, Prentice Hall of India Pvt. Ltd.,
 2006.
- 2. John N.Mordeson and Premchand S.Nair, Fuzzy Mathematics, Spring verlong, 2001

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	S	M	Н
CO2	Н	S	M	Н	S
CO3	S	M	S	M	Н
CO4	M	Н	S	Н	M

Programme Code: 02		B.Sc Mathematics	
Major Ele	ctive Paper COMBIN	NATORICS	
Batch	Hours / Week	Total Hours	Credits
2018-2021	5	75	5

- 1. To learn about recurrence relation.
- 2. To have knowledge about permutation.
- 3. To be familiar with assignment problems.

Course Outcomes(CO)

K1	CO1	Remembering the basic concepts of Fibonacci sequence.
K2	CO2	Understanding the concepts of Permutation and Fibonacci type relation.
K3	CO3	Identifying the concepts of counting simple electrical networks.
K4	CO4	Analyzing inclusion and Exclusion principle.

Syllabus

UNIT I (15 Hours)

 $Introduction\ to\ Basic\ ideas-General\ formula\ for\ f(n,k)-Recurrence\ Relation-boundary\ condition\ -\ Fibonacci\ sequence-\ ^*generating\ function\ .$

UNIT II (15 Hours)

 $\label{eq:permutation-ordered} Permutation-Ordered\ selection-unordered\ selection-further\ remarks\ on\ Binomial\ theorem.$

UNIT III (15 Hours)

Passing within a set - Pairing between set and optimal assignment problem - Gala's optimal assignment problem.

UNIT IV (15 Hours)

Fibonacci type relation – using generating function – Miscellaneous method – counting simple electrical networks.

UNIT V (15 Hours)

The inclusion – Exclusion principle - Rook polynomial.

* denotes self study (Questions may be asked from these portions also)

Teaching methods

Chalk and Talk/Power point Presentations/Group discussions/Seminar /Assignment

Text Book

Jan Anderson, A First Course in Combinatorial Mathematics, Oxford Applied Mathematics and Computing Science Series, UK, 2013.

Reference Books

- 1.V.K.Balakrishnan, Combinatorics, Schuam Series, 1996.
- 2. Russell Merris, Combinatorics, John Wiley & Sons, 2003.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	M	S	Н	M
CO2	Н	S	M	Н	S
CO3	M	Н	S	M	Н
CO4	S	M	S	Н	S

Programme Code: 02		B.Sc Mathematics			
Major Elective Paper STOCHASTIC PROCESSES					
Batch	Hours / Week	Total Hours	Credits		
2018-2021	5	75	5		

- 1. To know the basic concepts of Laplace transforms.
- 2. To study the fundamentals of stochastic process.
- 3. To know the applications of queuing systems.

Course Outcomes(CO)

K1	CO1	Remembering the basic concepts of Difference equations.
K2	CO2	Understanding the concepts of Markov chains.
K3	CO3	Identifying the concepts of Poisson process and related distributions.
K4	CO4	Analyzing Stochastic process in queuing and reliability.

Syllabus

UNIT I (15 Hours)

Generating function – Laplace transforms – Laplace transforms of a probability distribution function Difference equations – Differential difference equations – *Matrix analysis.

UNIT II (15 Hours)

Stochastic process – notion – specification – stationary process – Markov chains – Definition and examples – Higher transition probabilities.

UNIT III (15 Hours)

Classification of states and chains – Determination of Higher transition probabilities – stability of Markov system – limiting behavior.

UNIT IV (15 Hours)

Poisson process and related distributions – generalization of Poisson process – Birth and death process.

UNIT V (15 Hours)

Stochastic process in queuing and reliability – queuing systems, m/m/1 models – Birth and death process in queuing theory – Mutti channel models – Bulk Queues.

* denotes self study (Questions may be asked from these portions also)

Teaching methods

Chalk and Talk/Power point Presentations/Group discussions/Seminar /Assignment

Text Book

J. Medhi, Scope and treatment as in "Stochastic Process", Wiley Publishers, 1994.

Reference Books

- 1. First course in Stochastic Process by Samuel Kartin.
- 2. Stochastic Process by Srinivasan and Metha (TATA Mc Graw Hill)
- 3. Elements of Applied Stochastic Process by V. Narayanan.

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	M	Н	M	S
CO2	Н	S	M	Н	S
CO3	S	M	M	S	Н
CO4	M	Н	S	Н	M

18UHR3N1

Programme Code : 02	Programme Code: 02 B.Sc Mathematics		
PART IV -NON M.	AJOR ELECTIVE -	-I HUMAN RIGHT	S
Batch	Hours / Week	Total Hours	Credits
2018-2021	2	30	2

Objectives

- 1. To prepare for responsible citizenship with awareness of the relationship between Human Rights, democracy and development.
- 2. To impart education on national and international regime on Human Rights.
- 3. To sensitive students to human suffering and promotion of human life with dignity.
- 4. To develop skills on human rights advocacy
- 5. To appreciate the relationship between rights and duties
- 6. To foster respect for tolerance and compassion for all living creature.

UNIT - I

Definition, Meaning, Concept ,Theories and Kinds of Human Rights- Evaluation and Protection of Human Rights in India- Development of Human Rights under the United Nations.

UNIT - II

United Nations Charter and Human Rights - U.N.Commission on Human Rights-Universal Declaration of Human Rights - International Covenant on

- Civil & Political Rights
- Economic, Social and Cultural Rights

UNIT – III

Human Rights and Fundamental Rights (Constitution) - Enactments regarding Human Rights Laws in India - National Human Rights Commission and State Human Rights Commission.

UNIT – IV

Aged persons and their Human Rights - Human Rights of Persons with Disabilities - Tribal Human Rights in India - Three Generation Human Rights.

18UHR3N1

UNIT – V

Rights of Women, Child, Refugees and Minorities - Media and Human Rights - NGO's in protection of Human Rights - Right to Election

Books for Study:

1. Human Rights Compiled by Dr. V. Sugantha, Dean(Unaided),

Kongunadu Arts and Science College,

Coimbatore –29.

Book for Reference:

1.Human Rights, Jaganathan,MA.,MBA.,MMM.,ML.,ML.,
Humanitarian Law and Refugee Law J.P.Arjun Proprietor,Usha Jaganathan
law series, 1st floor, Narmatha Nanthi

Street, Magathma Gandhi Nagar, Madurai – 625014.

2. Promoting Women's Rights Publisher : United Nations.

As Human Rights New York., 1999.

Question Paper Pattern (External only)

Duration: 3 hrs Max: 75 marks

Section A (5x5=25)

Short notes

Either - Or/ Type - Question from each unit

Section B (5X10=50)

Essay type

Either - Or/ Type - Question from each unit

18UWR4N2

Programme Code : 02	B.Sc Mathematics				
PART IV - NON MAJOR ELECTIVE-II WOMEN'S RIGHTS					
Batch	Hours / Week	Total Hours	Credits		
2018-2021	_	30	•		

OBJECTIVES

- To know about the laws enacted to protect women against violence.
- > To impart awareness about the hurdles faced by women.
- > To develop a knowledge about the status of all forms of women to access to justice.
- > To create awareness about women's rights.
- To know about laws and norms pertaining to protection of women.
- To understand the articles which enables the women's rights.
- > To understand the Special Women Welfare laws.
- To realize how the violence against women puts an undue burden on health care services.

Unit I 6hrs

Laws, Legal System & Change

Definition- Constitutional law, CEDAW and international human rights-law and norms-laws and social context-constitutional and legal frame.

Unit II 6hrs

Politics of Land and Gender in INDIA

Introduction-faces of poverty-land as productive resources-locating identities-women's claim to land –rights of properties-case studies.

Unit III 6hrs

Women's Rights: Access to Justices

Introduction-criminal law-crime agent women-domestic violence-dowry related harassment and dowry deaths-molestation-sexual abuse and rape-loopholes in practice-laws enforcement agency.

Unit IV 6hrs

Women's Right

Violence against-women-domestic violence-the protection of women from domestic violence act, 2005-The Marriage Validation Act, 1982-The Hindu Widow Re-marriage Act, 1856 - The Dowry Prohibition Act, 1961.

18UWR4N2

Unit V 6hrs

Special Women Welfare Laws

Sexual harassment at work place-rape and indecent representation-the indecent representation act, 1956-acts enacted for women development and empowerment-role of rape crisis center.

Book for study: Published by Kongunadu Arts & Science College, 2011.

Books for reference:

1. Good Women do not Inherit land

Nitya Rao, Social Science Press and Orient

Blackswan (2008).

2. Knowing Our Rights An Impart for Kali for Women (2006).

International solidarity network.

3. Women Rights P.D.Kaushik, Bookwell Publications (2007).

4. Violence Protective Measures for Aruna Goal,

Women Development and Empowerment Deep and Deep Publications Pvt. (2004).

5. Gender Justice Monika Chawla, Deep and Deep Publications

Pvt. (2006).

6. Domestic Violence Against Women Preeti Mishra, Deep and Deep Publication

Pvt. (2007).

7. Violence against Women Clair M. Renzetti, Jeffrey L. Edleson, Raquel

Kennedy Bergen, Sage Publications (2001).

Question paper pattern

(External Only)

Duration: 3 hrs Max: 75 Marks

Section A $(5 \times 5=25)$

Short notes

Either - or / type - question from each unit.

Section B (5 x 10=50)

Essay type

Either - or / type - question from each unit.

Programme Code: 02			B.Sc Mathemat	tics
NON- MAJOR ELECTIVE – CONSUMER AFFAIRS				
Batch	Hours/	/Week	Total Hours	Credits
2018-2021	2	2	30	2

- 1. To familiarize the students with their rights and responsibilities as a consumer.
- 2. To understand the procedure of redress of consumer complaints, and the role of different agencies in establishing product and service standards.
- 3. To have a handle the business firms' interface with consumers and the consumer related regulatory and business environment.

UNIT I (15 Hours)

Conceptual Framework - Consumer and Markets: Concept of Consumer, Nature of markets: Liberalization and Globalization of markets with special reference to Indian Consumer Markets, E-Commerce with reference to Indian Market, Concept of Price in Retail and Wholesale, Maximum Retail Price (MRP), Fair Price, GST, labeling and packaging along with relevant laws, Legal Metrology. Experiencing and Voicing Dissatisfaction: Consumer buying process, Consumer Satisfaction/dissatisfaction-Grievances-complaint, Consumer Complaining Behaviour: Alternatives available to Dissatisfied Consumers; Complaint Handling Process: ISO 10000 suite

UNIT II (15 Hours)

The Consumer Protection Law in India - Objectives and Basic Concepts: Consumer rights and UN Guidelines on consumer protection, Consumer goods, defect in goods, spurious goods and services, service, deficiency in service, unfair trade practice, restrictive trade practice.

Organizational set-up under the Consumer Protection Act: Advisory Bodies: Consumer Protection Councils at the Central, State and District Levels; Adjudicatory Bodies: District Forums, State Commissions, National Commission: Their Composition, Powers, and

Jurisdiction (Pecuniary and Territorial), Role of Supreme Court under the CPA with important case law.

UNIT III (15 Hours)

Grievance Redressal Mechanism under the Indian Consumer Protection Law - Who can file a complaint? Grounds of filing a complaint; Limitation period; Procedure for filing and hearing of a complaint; Disposal of cases, Relief/Remedy available; Temporary Injunction, Enforcement of order, Appeal, frivolous and vexatious complaints; Offences and penalties.

Leading Cases decided under Consumer Protection law by Supreme Court/National Commission: Medical Negligence; Banking; Insurance; Housing & Real Estate; Electricity and Telecom Services; Education; Defective Products; Unfair Trade Practices.

UNIT IV (15 Hours)

Role of Industry Regulators in Consumer Protection

- i. Banking: RBI and Banking Ombudsman
- ii. Insurance: IRDA and Insurance Ombudsman
- iii. Telecommunication: TRAI
- iv. Food Products: FSSAI
- v. Electricity Supply: Electricity Regulatory Commission
- vi. Real Estate Regulatory Authority

UNIT V (15 Hours)

Contemporary Issues in Consumer Affairs - Consumer Movement in India: Evolution of Consumer Movement in India, Formation of consumer organizations and their role in consumer protection, Misleading Advertisements and sustainable consumption, National Consumer Helpline, Comparative Product testing, Sustainable consumption and energy ratings. Quality and Standardization: Voluntary and Mandatory standards; Role of BIS, Indian Standards Mark (ISI), Ag-mark, Hallmarking, Licensing and Surveillance; Role of International Standards: ISO an Overview.

Note: Unit 2 and 3 refers to the Consumer Protection Act, 1986. Any change in law would be added appropriately after the new law is notified.

Suggested Readings:

- 1. Khanna, Sri Ram, Savita Hanspal, Sheetal Kapoor, and H.K. Awasthi. (2007) Consumer Affairs, Universities Press.
- 2. Choudhary, Ram Naresh Prasad (2005). Consumer Protection Law Provisions and Procedure, Deep and Deep Publications Pvt Ltd.
- 3. G. Ganesan and M. Sumathy. (2012). Globalisation and Consumerism: Issues and Challenges, Regal Publications
- 4. Suresh Misra and Sapna Chadah (2012). Consumer Protection in India: Issues and Concerns, IIPA, New Delhi
- 5. Rajyalaxmi Rao (2012), Consumer is King, Universal Law Publishing Company
- 6. Girimaji, Pushpa (2002). Consumer Right for Everyone Penguin Books.
- 7. E-books:-www.consumereducation.in
- 8. Empowering Consumers e-book, www.consumeraffairs.nic.in
- 9. ebook, www.bis.org
- 10. The Consumer Protection Act, 1986 and its later versions.

Programme Code: 03		B.Sc Physics		
Course Code: 18UMA1A1		Allied A Paper 1 Mathematics		
Batch	Semester	Hrs/Week	Total Hours	Credits
2018-2021	I	5	105	5

Course Objectives

- 1.To provide the basic knowledge of Trigonometry and Matrices.
- 2.To get the ability of solving first and second order ordinary differential equations and first order partial differential equations
- 3.To give basic knowledge about Mathematical concepts in Calculus.

Course Outcomes (CO)

K1	CO1	Defining hyperbolic and inverse hyperbolic functions.
K2	CO2	Understanding the concept of Characteristic equations to find Eigen Values and Eigen Vector.
К3	CO3	Applying finite difference methods for interpolation.
K4	CO4	Analyzing the Laplace and inverse Laplace transforms and solve Ordinary differential equations.

SYLLABUS

UNIT I (21 hrs)

Matrices: Eigen values and Eigen vectors – **Properties of the Eigen vectors*** – Cayley – Hamilton theorem – Use of this theorem to find the inverse of a matrix - Unitary and Orthogonal matrix. (No proof is needed for properties and theorem).

UNIT II (21 hrs)

Calculus: Curvature and radius of Curvature in Cartesian and polar form – Evaluation of double and triple integral – Change of variables in double and triple integral – Beta and Gamma function – Relations – Problems.

UNIT III (21 hrs)

Numerical methods: Solutions of algebraic and transcendental equations by bisection method, iteration method and Newton – Raphson method – **Solution of simultaneous linear algebraic equations by Gauss elimination method***, Gauss Jordan method, Gauss Jacobi method, Gauss Seidal method.

UNIT IV (21 hrs)

Trigonometry: Applications of De Moivre's theorem $-\cos n\theta$, $\sin n\theta$, $\tan n\theta$ - Expansions of $\cos n\theta$, $\sin n\theta$ - Expressions of $\cos n\theta$, $\sin n\theta$ and $\tan n\theta$ in powers of θ - Simple limit problems like $\theta \rightarrow 0$ and $\theta \rightarrow \pi/2$ - Hyperbolic functions – Relations between circular and hyperbolic functions – Inverse hyperbolic functions – Real and imaginary parts of $\sin (\alpha + i\beta)$, $\cos(\alpha + i\beta)$, $\tan(\alpha + i\beta)$, $\tan^{-1}(\alpha + i\beta)$.

UNIT V (21 hrs)

Laplace Transforms: Definition – Laplace Transform of t^n , e^{at} , sin at, cos at, sinh at, cosh at, n, a positive integer - $e^{at}f(t)$, $t^nf(t)$, f''(t) – Inverse Laplace Transform of standard functions – Solving differential equations of Second order with constant coefficients using Laplace Transform.

* Self Study (Questions may be asked from these portions also) Teaching Methods

Chalk and Talk, Powerpoint presentation, Assignments, Seminar.

Text Books

- 1. S. Narayanan and T. K. Manickavasagam Pillai, Algebra Vol. II S. Viswanathan (Printers and Publishers, (P)Ltd, Chennai, 1997. (For Unit I)
- 2. S.Narayanan and T.K. Manickavasagam Pillai, Calculus Vol. I, Vol. II, S.Viswanathan (Printers and Publishers, (P)Ltd, Chennai, 1999. (For Unit II)
- 3. M.K. Venkataraman , Numerical methods in Science and Engineering , NPC, Chennai , 1999. (For Unit III)
- 4. S. Narayanan and T. K. Manickavasagam Pillai, Trigonometry S. Viswanathan (Printers and Publishers, (P)Ltd, Chennai, 1997. (For Unit IV)
- 5. S. Narayanan and T. K. Manickavasagam Pillai, Calculus Vol. III S.Viswanathan (Printers and Publishers, (P)Ltd, Chennai, 1997. (For Unit V)

References

- 1. G.C.Sharma and Madhu Jain, Algebra and Trigonometry, 1st Edition, Galgotia Publications Pvt.Ltd., 2003.
- 2. Dr.J.K.Goyal and G.P.Gupta, Laplace and Fourier Transforms, 16th Edition, Pragati Prakashan, Meerut, 2003.

- 3. Dr.S.Arumugam, A.Thangapandi Isaac and A.Somasundaram, Numerical Methods, 2nd reprint, Scitech Publication India Pvt, Ltd., 2004.
- 4. P.Kandsamy, K.Thilagavathi and K.Gunavathi, Numerical Methods, S.Chand & Company Ltd, New Delhi, 2003

Mapping

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	S	M	Н	Н
CO2	Н	S	S	M	Н
CO3	S	Н	M	Н	S
CO4	Н	M	Н	S	S

18UMA2A1

Programme Code: 03		B.Sc Physics		
Course Code: 18UMA2A1		Allied A Paper 2 Mathematics II		
Batch	Semester	Hrs/Week	Total Hours	Credits
2018-2021	II	5	105	5

Course Objectives

- 1. To provide the basic knowledge of Probability.
- 2. To get the ability to solve Partial differential equations.
- 3. To Understand basic knowledge in Vector Calculus.

Course Outcomes (CO)

K1	CO1	Defining the multiple integrals using Green's Theorem.
K2	CO2	Illustrating the Fourier Coefficient for periodic Functions.
К3	CO3	Solving Partial Differential Equation by using the Lagrange's Method.
K4	CO4	Examining the General solution of Bessel's equations.

SYLLABUS

UNIT I (21 hrs)

Formation of Partial differential equations – **Elimination of arbitrary constants*** – elimination of arbitrary functions – solutions of partial differential equations by direct integration – Methods to solve the first order partial differential equations – F(p,q) = 0, z=px+qy+f(p,q), F(z,p,q)=0, F(x,p,q)=0, F(y,p,q)=0 – Separable equations – equations reducible to standard forms – Lagrange's linear equations – Charpit's method.

UNIT II (21 hrs)

Vector Calculus – Gradient, Divergence and curl (problems only). Integration of vectors: Integration of vector functions, Line integrals – Surface integrals – Green's theorem in the plane (statement only) – Gauss Divergence theorem (statement only) – Problems – Stoke's theorem (statement only) – Problems.

UNIT III (21 hrs)

Fourier series – Periodic function – Fourier series – **Dirichlet's conditions*** – even and odd functions – Half-range sine series – Half-range cosine series.

18UMA2A1

UNIT IV (21 hrs)

Probability: Introduction – Random experiment – Addition law – Multiplication law – Bayes theorem (problems only)

UNIT V (21 hrs)

Total differential equations - Bessel's equations : Bessel's equations - Solutions of Bessel's general differential equations (derivations not included) - General solution of Bessel's equations - Recurrence formulae (derivations not included) - Simple problems using Recurrence relation.

* Self Study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk, Powerpoint presentation, Assignments, Seminar.

Text Books

- 1. P. Kandasamy and K. Thilagavathy, Mathematics for B. Sc., Br. -I, Volume-III, S. Chand & Company Ltd, First edition, 2004. (For Unit-I, IV,V)
- 2. P. Kandasamy and K. Thilagavathy, Mathematics for B. Sc., Br. -I, Volume-II, S. Chand & Company Ltd, First edition, 2004. (For Unit-II, III)
- 3. J. N. Sharma and R. K. Gupta, Special Functions, Krishna Prakashan Mandir, Fifteenth edition, 1992.(For Unit- V).

Reference Books

- 1. Shanti Narayan, Differential Calculus, Shyamlal Charitable Trust, New Delhi, 2004.
- 2. B.M.Aggarwal, Integral Calculus, 1st Edition, Satya Prakashan Publishers, New Delhi, 1992
- 3. P.N.Chatterji, Vector Calculus, 1st Edition, Rajhans Prakahan Publishers, Chennai, 1998. **Mapping**

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	M	Н	Н
CO2	Н	S	S	M	Н
CO3	S	Н	M	Н	S
CO4	Н	M	Н	S	S

Programme Code: 04		B.Sc Chemistry		
Course Code: 18UMA1A2		Allied A Paper 1 Mathematics I		
Batch	Semester	Hrs/Week	Total Hours	Credits
2018-2021	I	5	105	5

Course Objectives

- 1.To provide the basic knowledge of Trigonometry.
- 2.To get the ability of solving first and second order ordinary differential equations and first order partial differential equations
- 3.To know about finite differences and its uses to interpolate the values for equal and unequal intervals.

Course Outcomes (CO)

K1	CO1	Defining hyperbolic and inverse hyperbolic functions.
K2 CO2		Understanding the concept of first order higher degree ordinary differential
K2	CO2	equations.
К3	CO3	Applying finite difference methods for interpolation.
IZ 4	CO4	Analyzing the Laplace and inverse Laplace transforms to solve the
K4 CO4		Ordinary differential equations.

SYLLABUS

UNIT I (21hrs)

Second order linear differential equations with constant coefficients- $f(x)=e^{mx}$, sin mx, cosmx, x, x^2 - First order higher degree differential equations- Solvable for x, y, p- Clairaut's form

UNIT II (21hrs)

Numerical methods – Solution of algebraic equations by Newton- Raphson method – Solution of simultaneous linear algebraic equations by Gauss elimination method, Gauss Jacobi and Gauss Seidel method of iteration

UNIT III (21hrs)

Matrices: Introduction, Product of matrices, **Transpose of a matrix***, matrix inverse-Characteristic roots and Characteristic vectors - Cayley - Hamilton theorem (without proof) – Verification.

UNIT IV (21hrs)

Trigonometry: **Expansions of cos n0**, **sin n0*** - Expressions of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in powers of θ - Hyperbolic functions – Relations between circular and hyperbolic functions-Inverse hyperbolic functions – Real and imaginary parts of $\sin (\alpha + i\beta)$, $\cos (\alpha + i\beta)$, $\tan (\alpha + i\beta)$

UNIT V (21hrs)

Laplace Transforms: Definition – Laplace Transform of e^{at} , cos at, sin at, cosh at, sinh at, t^n , n, a positive integer – e^{at} f (t), t^n f(t), f '(t), f "(t) – Inverse Laplace Transform of standard functions – Solving differential equations of Second order with constant coefficients using Laplace Transform.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk, Powerpoint presentation, Assignments, Seminar.

Text Books

- 1. S. Narayanan and T. K. Manickavasagam Pillai, Calculus Vol. III S. Viswanathan (Printers and Publishers, (P)Ltd, Chennai, 1997. (For Unit I, V)
- 2. M.K. Venkataraman , Numerical methods in Science and Engineering , NPC, Chennai, 1999.(For Unit II)
- 3. S. Narayanan and T. K. Manickavasagam Pillai, Algebra Vol. II S. Viswanathan (Printers and Publishers, (P)Ltd, Chennai, 1997. (For Unit III)
- 4. S. Narayanan and T. K. Manickavasagam Pillai, Trigonometry, S. Viswanathan (Printers and Publishers, (P)Ltd, Chennai, 1997. (For Unit IV)

References

- 1. G.C.Sharma and Madhu Jain, Algebra and Trigonometry, 1st Edition, Galgotia Publications Pvt.Ltd., 2003.
- 2. Dr.J.K.Goyal and G.P.Gupta, Laplace and Fourier Transforms, 16th Edition, Pragati Prakashan, Meerut, 2003.
- 3. Dr.S.Arumugam, A.Thangapandi Isaac and A.Somasundaram, Numerical Methods, 2nd reprint, Scitech Publication India Pvt, Ltd., 2004.
- 4. P.Kandsamy, K.Thilagavathi and K.Gunavathi, Numerical Methods, S.Chand & Company Ltd, New Delhi, 2003.

18UMA1A2

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	M	Н	Н
CO2	Н	S	S	M	Н
CO3	S	Н	M	Н	S
CO4	Н	M	Н	S	S

18UMA2A2

Programm	e Code: 04	B.S	Sc Chemistry	
Course Code	: 18UMA2A2	Allied A Pa	per 2 Mathemat	ics II
Batch	Semester	Hrs/Week	Total Hours	Credits
2018-2021 II		5	105	5

Course Objectives

- 1. To give basic knowledge about Mathematical concepts in Calculus.
- 2. To understand the concepts of Evaluating Double and Triple integrals.
- 3. To get the ability of solving Partial differential equations .

Course Outcomes (CO)

K1	CO1	Remembering the formulas in Differentiation and Integration.
K2	CO2	Illustrating the Fourier Coefficient for periodic Functions.
К3	CO3	Solving Partial Differential Equation by using the Lagrange's Method.
K4	CO4	Analyzing the differential operator to find Gradient, Divergence and Curl

SYLLABUS

UNIT I (21hrs)

Calculus - Differentiation: Derivatives of standard functions (Algebraic*, Trigonometric, Logarithmic, Exponential) . Curvature and radius of Curvature in Cartesian form.

UNIT II (21hrs)

Evaluation of double and triple integral using Jacobian only- Beta and Gamma function—Relations, properties and simple problems.

UNIT III (21hrs)

Vector calculus – Gradient of a scalar point function – Divergence and curl of a vector point function.

18UMA2A2

UNIT IV (21hrs)

Partial differential equation :Formation of Partial differential equations by eliminating arbitrary constants and arbitrary functions* – Solutions of standard types of first order equations – f(p,q)=0, f(x,p,q)=0, f(y,p,q)=0, f(z,p,q)=0, $f_1(x,p)=f_2(y,q)$, z=px+qy+f(p,q), Clairaut's form– Lagrange method of solving linear partial differential equations P(y)=0, P(y)=0

UNIT V (21hrs)

Fourier series – Definition – Finding Fourier coefficients for a given periodic function with period 2π -Odd and Even functions – Half range series.

* denotes self study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk, Powerpoint presentation, Assignments, Seminar.

Text Books

- 1. S.Narayanan and T.K. Manickavasagam Pillai, Calculus Vol. I, Vol. II, S.Viswanathan (Printers and Publishers, (P)Ltd, Chennai, 2003 (For Unit I, II)
- 2. P.Duraipandian and Lakshmi Duraipandian, Vector Analysis, Emerald publishers, Chennai –2, 1998. (For Unit III)
- 3. S.Narayanan and T.K. Manickavasagam Pillai, Calculus Vol. III, S.Viswanathan (Printers and Publishers, (P)Ltd, Chennai, 2010. (For Units IV &V)

Reference Books

- 1. Shanti Narayan, Differential Calculus, Shyamlal Charitable Trust, New Delhi, 2004.
- 2. B.M.Aggarwal, Integral Calculus, 1st Edition, Satya Prakashan Publishers, New Delhi, 1992.
- 3. P.N.Chatterji, Vector Calculus, 1st Edition, Rajhans Prakahan Publishers, Chennai, 1998.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	S	M	Н	Н
CO2	Н	S	S	M	Н
CO3	S	Н	M	Н	S
CO4	Н	M	Н	S	S

18UCS1A1

Programme	e Code : 09	B.Sc Computer Science			
Course Code:	18UCS1A1	Allied 1 - DISCRETE MATHEMATICS AND			
		STATISTICS			
Batch	Semester	Hours / Week Total Hours Credits			
2018-2021	I	6 90 5			

Course Objectives

- 1. To understand the concepts of discrete structures, formal languages.
- 2. To use finite state machines to model computer operations.
- 3. To solve real time problems using various statistical techniques.

Course Outcomes (CO)

K1	CO1	Remembering the fundamental ideas and notation of discrete
		mathematics with examples.
K2	CO2	Understanding the concept of measures of central tendency, measures
		of dispersion, Correlation, regression, probability distributions,
		hypothesis testing.
K3	CO3	Applying problem solving techniques to solve real world problems.
K4	CO4	Analyzing the experimental and observational data and draw
		appropriate conclusions.

Syllabus

UNIT I (18 Hours)

MATHEMATICAL LOGIC: Connective, well-formed formula, tautology equivalence of formulas, tautological implications, **duality law***, normal forms, predicates, variables, quantifiers, Free and bound variables. Theory of inference for statement calculus and predicate calculus.

UNIT II (18 Hours)

FORMAL LANGUAGES AND AUTOMATA: Grammars, phrase-structure grammar, context-sensitive grammar, context-free grammar, regular grammar. Finite State automata: Deterministic Finite-State automata, non-deterministic finite-state automata-conversion of non-deterministic finite state automata to deterministic finite state automata.

18UCS1A1

UNIT III (18 Hours)

Measures of Central Tendency: Mean, median, mode, geometric mean and harmonic mean. Measures of dispersion: **Range***, Quartile deviation, Standard deviation and co-efficient of variance. Skewness: Meaning- Bowley's and Pearson's coefficient of skewness.

UNIT IV (18 Hours)

Correlation: Meaning and Definition – Types - Scatter diagram – Pearson's Correlation – co-efficient of correlation – Rank Correlation. Regression: Regression equation of two variables. Probability – Binomial – Poisson and normal distribution (simple problems).

UNIT V (18 Hours)

Concept of sampling – Test of Mean for large samples - t - test: specified mean – difference between two sample means. F test of significance for small sample. Chi-Square test for goodness of fit and Independent test for attributes.

Note: Derivations not Included.

* denotes Self study (Questions for examinations may be taken from the self study portions also).

Teaching Methods

Chalk and Talk, Power point Presentation, Seminar, Quiz, Assignment.

Text Books:

- **1.** V. Sunderesan, K.S.Ganapathy Subramanian and K.Ganesan- "Discrete Mathematics". A.R publications-(UNIT I,II)
- 2. S.P. Gupta "Statistics", S. Chand and Company Ltd.18th edition 2009 (UNIT III, IV, V).

Reference Books:

- 1. J.P. Trembley and R.P. Manohar "Discrete Mathematical structures with applications to computer science". Tata MCGraw Hill-1997
- 2. R.S.N.Pillai and Bhagavathi- "Statistics", 7th edition,2008

18UCS1A1

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	M	Н	S	Н	S
CO2	S	M	Н	Н	S
CO3	Н	S	M	S	Н
CO4	S	Н	Н	M	S

18UCT1A1

Programm	e Code: 11	B.Sc Computer Technology			
Course Code: 18UCT1A1		Allied 1-Discrete Mathematics and Statistics			
Batch	Semester	Hours / Week Total Hours Credits			
2018-2021	I	6	90	5	

Course Objectives

- 1. To understand the concepts and principles of mathematical logic, formal languages
- 2. To classify Measures of central tendency and dispersion
- 3. To know the purpose of correlation and regression

Course Outcomes (CO)

K1	CO1	Remembering about the fundamental ideas and notation of discrete
		mathematics with examples
K2	CO2	Understanding the concepts of measures of central tendency and
		dispersion
К3	CO3	Applying Logic and Boolean algebra concepts in circuit construction
K4	CO4	Analyzing grammar in shortest path construction

Syllabus

UNIT I (18 Hours)

Mathematical Logic: Connectives, Well-formed formula, Tautology, Equivalence formulae, Tautological implications, Duality law, Normal forms.

UNIT II (18 Hours)

Formal Languages and Automata - Grammars: Phrase-structure grammar, context-sensitive grammar, context-free grammar and regular grammar. Finite state Automata: Deterministic finite state automata - Conversion of non deterministic finite state automata to deterministic finite state automata.

UNIT III (18 Hours)

Lattices and Boolean algebra: Partial ordering set- Poset- Lattices, distributive lattices. Boolean algebra: Minimization of Boolean function using K-map.

UNIT IV (18 Hours)

Measures of central tendency: Mean, Median, Mode, Geometric mean and Harmonic mean. Measures of Dispersion: Range, Quartile deviation, Standard deviation and coefficient of variation.

18UCT1A1

UNIT V

(18 Hours)

Correlation and Regression - Correlation: Meaning and definition - Types- Scatter diagram- Karl Pearson coefficient of correlation- Rank correlation. Regression: Meaning and definition-Regression equation of two variables - **Difference between correlation and Regression***.

* denotes Self study(Questions may be taken from these portions also).

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Quiz, Assignment.

Text Books:

- 1. M. K. Venkataraman, N. Sridharan, N. Chandrasekaran-"Discrete Mathematics".
- 2. S.P.Gupta "Statistical Methods". Sultan Chand and Sons-2007.

Reference Books:

- 1. J.P. Trembley and R.P. Manohar "Discrete Mathematical structures with applications to computer science". Tata MCGraw Hill-1997.
- 2. R.S.N. Pillai and Bhagavathi- "Statistics", 7th edition, 2008.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	S	Н	S	M
CO2	M	S	M	S	M
CO3	S	S	Н	S	Н
CO4	S	Н	S	S	Н

18 UCA3A3

Programm	e Code: 10		BCA	
Course Code: 18 UCA3A3		OPERATIONS RESEARCH		
Batch	Batch Semester		Total Hours	Credits
2018-2021	III	6	90	5

Course Objectives

- 1. To identify and develop operational research models from the verbal description of the real system.
- 2. To understand the mathematical tools that are needed to solve optimization problems.
- 3. To develop a report that describes the model and the solving technique.

Course Outcomes (CO)

K1	CO1	Showing that the real time problems can be solved by using operations
		research techniques.
K2	CO2	Demonstrating the idea of finding the shortest path using transportation
		problem.
K3	CO3	Appling the concept of inventory control and replacement techniques in
		business.
K4	CO4	Examining the concept of traffic intensity in real life problems.

Syllabus

UNIT I (18 Hours)

Linear programming: Introduction - Mathematical formulation of the problem - Graphical solution - **General form of LPP, Canonical & standard forms of LPP *** - Simplex method - Big M method - Two phase simplex method.

UNIT II (18 Hours)

The Transportation probem: Mathematical formulation of the problem - Initial basic feasible solution (Matrix minimum method , North -west corner rule & VAM) - Moving towards optimality - Unbalanced transportation problems.

Assignment problem: Mathematical formulation of an assignment problem - Hungarian assignment method - Unbalanced Assignment problems

18 UCA3A3

UNIT III (18 Hours)

Inventory control: Introduction - various costs involved in Inventory - EOQ models with and without shortage - Buffer stock & reorder level- EOQ problems with price -breaks.

UNIT IV (18 Hours)

Replacement problems: Introduction- Replacement of equipments that deteriorates gradually: Value of money does not change with time –Value of money changes with time- to find the optimal Replacement Policy - Replacement of equipment that fails suddenly.

PERT-CPM: Introduction - Rules of network construction - CPM and PERT calculations.

UNIT V (18 Hours)

Queueing theory: Introduction - characteristics of Queueing system- Traffic Intensity - classification of Queues - Problems from single server infinite & finite population model. (Derivations not included)

* denotes Self Study (Questions for examinations may be taken from Self Study Portions also).

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar and Assignments.

Text Book:

1.Kanti Swarup, P.K Gupta & Man Mohan, "Operations Research", Sultan chand publications, New Delhi.9th edition 2002

Reference Book:

1.P.K.Gupta & ManMohan, "Problems in Operations Research" Sultan Chand Publications, New Delhi, 6th edition 1994.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	M	S	Н	M	Н
CO2	S	M	S	S	M
CO3	Н	M	M	Н	S
CO4	S	Н	Н	S	M

18UBT3A3

Programme Code: 08		B.Sc Biotechnology		
Course Code: 18UBT3A3		BASIC MATHEMATICS AND STATISTICS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	III	6	90	4

Course Objectives

- 1. To understand the basic concepts in mathematics and statistics.
- 2. To analysis wide variety of data.
- 3. To make deductions from assumption.

Course Outcomes (CO)

K1	CO1	Remember the basic concepts in mathematics and statistics.
K2	CO2	Understand the scope of data collections using statistical methods.
К3	CO3	Apply the concepts of Differentiation and Integration in the field of Bio-technology.
K4	CO4	Analyze the correlation among the variables.

Syllabus

UNIT I (18 Hours)

Matrices – Types of Matrices-*Addition-Subtraction - Multiplication-Determinant - Inverse of a matrix – Eigen values and Eigen vectors – Solution of simultaneous linear equation using Inverse matrix method and Cramer's rule.

UNIT II (18 Hours)

Differentiation of algebraic, exponential and logarithmic functions-Physical interpretation of derivatives with reference to velocity and acceleration – Applications of differentiation to maxima and minima (simple problems).

UNIT III (18 Hours)

Integration of simple algebraic, exponential and logarithmic functions – Method of Partial fractions-Integration by parts.

18UBT3A3

UNIT IV (18 Hours)

Meaning and Scope of Statistics-Collection of data — Diagrammatic presentation: One dimensional and two dimensional-Graphical presentation: Histogram, frequency polygon, frequency curve and ogive curve. Measures of central tendency: Mean, median, mode, Geometric mean and Harmonic mean.

UNIT V (18 Hours)

Measures of Dispersion: Range – Quartile deviation – Standard deviation - coefficient of variation. Correlation: Definition – types of correlation – Scatter diagram - Karl pearson's coefficient of correlation – Spearman's Rank correlation. Regression: Definition – Regression equations on two variables.

* denotes Self Study (Questions may be asked from these portions also)

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Assignment.

Text Books

- 1. A.R. Vasistha, "Matrices", Emerald publications, 2002.
- 2. S. Narayanan and T.K.M Pillai, "Calculus vol. I and II", S. Viswanathan Printers and Publishers Pvt. Ltd. 2010.
- 3. R S N Pillai & Bhagavathi "Statistics", S.Chand and sons,7th edition,2008.

References

1. S.P. Gupta, "Statistics", S. Chand and Company Ltd, 18th edition 2009.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	S	M	M	M
CO2	Н	S	M	M	Н
CO3	S	S	Н	M	M
CO4	S	Н	Н	Н	M

18UIT1A1

Programm	e Code : 12	B.Sc Information Technology		
Course Code: 18UIT1A1		MATHEMATICAL FOUNDATION OF		
		COMPUTER SCIENCE		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	I	6	90	5

Course Objectives

- 1. To understand Matrices, Set theory, Mathematical logic, Relations and Graph theory.
- 2. To solve the problems of Eigen values and Eigen vector.
- 3. To solve the problems of statement calculus and predicate calculus

Course Outcomes (CO)

K1	CO1	Remembering the concepts of matrices, set theory, mathematical logic,
		relations and graph theory
K2	CO2	Understanding the basic terminology of discrete mathematics
K3	CO3	Applying theory inference for statement calculus and predicate calculus
K4	CO4	Analyzing the results through the program outputs

Syllabus

UNIT I (18 Hours)

Matrices – Introduction – Determinant – Inverse of a matrix – Rank of a Matrix – Eigen values and Eigen vectors of a Matrix - Cayley- Hamilton theorem (problems only).

UNIT II (18 Hours)

Set theory-Types of sets- Venn-Euler Diagrams- *Set operations & Laws of set theory-Fundamental products- partitions of sets-minsets-Algebra of sets and Duality-Inclusion and Exclusion principle.

UNIT III (18 Hours)

Relations – Binary Relations – Set operation on relations-Types of Relations – Partial order relation – Equivalence relation – Composition of relations – Functions – Types of functions – Invertible functions – Composition of functions.

UNIT IV (18 Hours)

Mathematical Logic: Connective, well-formed formula, tautology equivalence of formulas, tautological implications, duality law, normal forms, predicates, variables, quantifiers, free and bound variables. Theory of inference for statement calculus and predicate calculus.

18UIT1A1

UNIT V (18 Hours)

Graph Theory – Basic terminology – paths, cycle & Connectivity – Sub graphs – Types of graphs – Representation of graphs in computer memory - Trees – Properties of trees – Binary trees – traversing Binary trees – Computer Representation of general trees.

*denotes Self Study (Questions for examinations may be taken from this Portions also).

Teaching Methods

Chalk and Talk, Power Point Presentations, Seminar, Assignment, Quiz

Text Books:

- 1. Dr M.K. Venkataraman "Engineering Mathematics Volume II" NPC,2001
- 2. J.K.Sharma "Discrete Mathematics", 2005, Macmillan India Ltd.

Reference Books:

- 1. J. P Tremblay R Manohar, "Discrete Mathematics Structures With Applications To Computer Science", Mc Graw Hill International, 2010.
- 2. V.Sunderasan, K.S.Ganapathi Subramaniam and K.Ganesan "Discrete Mathematics", AR Publication, 2000.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	S	S	M	M
CO2	S	Н	M	S	M
CO3	M	M	S	M	M
CO4	Н	S	Н	S	Н

18UBB1A1

Programn	ne Code: 16		BBA	
Course Code : 18UBB1A1		MATHEMA'	TICS FOR MANA	GEMENT – I
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	I	6	90	5

Course Objectives

- 1. To Understand the concepts of Matrices, concepts related with banking and concepts of various statistical tools.
- 2. To study the concepts of statistics, Measures of dispersion and Analysis of time series. Also understand the applications of these concepts in real world problems.
- 3. To use mathematical knowledge to analyze and solve problems.

Course Outcomes (CO)

K1	CO1	Remembering the basic concepts of mathematics in business analysis
K2	CO2	Understanding the problem-solving methods
К3	CO3	Applying basic mathematical calculations in business problems
K4	CO4	Analyzing mathematical techniques and applications

Syllabus

UNIT I (18 Hours)

Arithmetic and Geometric Series - Simple and Compound Interest - Present value - Discounting of Bills - True Discount - Banker's Gain.

UNIT II (18 Hours)

Matrix: Basic Concept - Addition & Multiplication of Matrices - Determinant of a Matrix-Inverse of a Matrix - Solution of Simultaneous Linear Equation using inverse matrix and elementary transformation of a matrix.

18UBB1A1

UNIT III (18 Hours)

Meaning and Scope of statistics - Sources of data - Collection of data - Primary and secondary data - Method of Primary and Secondary data collection - Classification and Tabulation - Presentation of data by diagram - Bar diagram and Pie diagram - Graphical Representation - Frequency distribution.

UNIT IV (18 Hours)

Measures of central tendency - Arithmetic mean, Median, Mode, Geometric and Harmonic mean. Measures of dispersion - **range*** - quartile and standard deviations - coefficient of variation.

UNIT V (18 Hours)

Skewness: Meaning- Bowley's and Pearson's Co-efficient of Skewness – Correlation - meaning and definition - scatter diagram - Pearson's correlation co-efficient - Rank correlation – Regression: Meaning of regression - regression in two variables.

* denotes Self Study (Questions for examinations may be taken from the self study portions also)

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Quiz and Assignment.

Text Book:

P.Navaneetham, "Business Mathematics", Nagarathinam, Kajamalai – Trichy, 1998.

Reference Books:

- 1.R.S.N. Pillai and V.Bagavathi, "Statistics", Sultan Chand, New Delhi, 2008.
- 2. Gupta S.P, Statistical Methods, Sultan Chand, New Delhi, 33rd Edition, 2005.

18UBB1A1

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	S	M	S
CO2	S	Н	M	S	Н
CO3	Н	M	S	S	S
CO4	S	S	Н	M	Н

18UBA1A1

Programn	ne Code: 17		BBA CA	
Course Code : 18UBA1A1		MATHEMATICS FOR MANAGEMENT – I		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	I	6	90	5

Course Objectives

- 1. To Understand the concepts of Matrices, concepts related with banking and concepts of various statistical tools.
- 2. To study the concepts of statistics, Measures of dispersion and Analysis of time series. Also understand the applications of these concepts in real world problems.
- 3. To use mathematical knowledge to analyze and solve problems.

Course Outcomes (CO)

K1	CO1	Remembering the basic concepts of mathematics in business analysis
K2	CO2	Understanding the problem-solving methods
К3	CO3	Applying basic mathematical calculations in business problems
K4	CO4	Analyzing mathematical techniques and applications

Syllabus

UNIT I (18 Hours)

Arithmetic and Geometric Series - Simple and Compound Interest - Present value - Discounting of Bills - True Discount - Banker's Gain.

UNIT II (18 Hours)

Matrix: Basic Concept - Addition & Multiplication of Matrices - Determinant of a Matrix-Inverse of a Matrix - Solution of Simultaneous Linear Equation using inverse matrix and elementary transformation of a matrix.

18UBA1A1

UNIT III (18 Hours)

Meaning and Scope of statistics - Sources of data - Collection of data - Primary and secondary data - Method of Primary and Secondary data collection - Classification and Tabulation - Presentation of data by diagram - Bar diagram and Pie diagram - Graphical Representation - Frequency distribution.

UNIT IV (18 Hours)

Measures of central tendency - Arithmetic mean, Median, Mode, Geometric and Harmonic mean. Measures of dispersion - **range*** - quartile and standard deviations - coefficient of variation.

UNIT V (18 Hours)

Skewness: Meaning- Bowley's and Pearson's Co-efficient of Skewness – Correlation - meaning and definition - scatter diagram - Pearson's correlation co-efficient - Rank correlation – Regression: Meaning of regression - regression in two variables.

* denotes Self Study (Questions for examinations may be taken from the self study portions also)

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Quiz and Assignment.

Text Book:

P.Navaneetham, "Business Mathematics", Nagarathinam, Kajamalai – Trichy, 1998.

Reference Books:

- 1. R.S.N. Pillai and V.Bagavathi,, "Statistics", Sultan Chand, New Delhi, 2008.
- 2. Gupta S.P, Statistical Methods, Sultan Chand, New Delhi, 33rd Edition, 2005.

18UBA1A1

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	Н	S	M	S
CO2	S	Н	M	S	Н
CO3	Н	M	S	S	S
CO4	S	S	Н	M	Н

18UCM3A3

Programm	e Code: 13		B.Com	
Course Code: 18UCM3A3		BUSINESS MATHEMATICS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	III	6	90	5

Course Objectives

- 1. To give basic knowledge about Mathematical concepts
- 2. To solve the modern business problems using various mathematical techniques.
- 3. To solve the various real life business problems.

Course Outcomes (CO)

K1	CO1	Remembering the application of mathematics in business analysis
K2	CO2	Understanding the concepts of mathematics in finance
К3	CO3	Applying basic mathematical calculations in business problems
K4	CO4	Analyzing the business conditions using Effective rate of Interest.

Syllabus

UNIT I (18 Hours)

Set Theory – Arithmetic and Geometric series – Simple and Compound Interest – Effective rate of Interest – Sinking Fund – Annuities – Discounting of Bills.

UNIT II (18 Hours)

Matrix: Basic Concepts – *Addition of matrices and Multiplication of matrices – Inverse of a matrix – Rank of a matrix – Solution of Simultaneous Linear equations(Cramer's rule and Inverse Matrix method) – Input – Output Analysis.

18UCM3A3

UNIT III (18 Hours)

Variables, Constants and Functions – Limits of Algebraic functions – Differentiation of functions (algebraic, exponential and logarithmic) – Meaning of derivatives – Evaluation of First and Second order derivatives – Application to Business Problems: Marginal concepts- Elasticity-Increasing and decreasing functions-Maxima and Minima.

UNIT IV (18 Hours)

Elementary Integral Calculus – Determining indefinite and definite integrals of algebraic, exponential and logarithmic functions – Method of Partial fractions- Integration by parts-Uses in Economics.

UNIT V (18 Hours)

Linear Programming Problems – Formulation of LPP – Solving LPP by Graphical method – Standard and Canonical form of LPP- Solving LPP by Simplex method(Less than or equal to constraints only).

* denotes Self Study (Questions for Examination may be taken from the Self Study Portion also).

Teaching Methods

Chalk and Talk, PowerPoint presentation, Assignment, Seminar

Text Book:

Navaneetham P. A. "Business Mathematics & Statistics", Jai Publisher, 2007.

Reference Books:

- 1. Dr. P R Vittal "Business Mathematics & Statistics", Margham Publications, Chennai, 6th edition, 2006.
- 2. Dharmapadam "Business Mathematics", S. Viswanathan publishing company, 1st edition, 1979.

18UCM3A3

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	M	M	S	Н
CO2	S	S	Н	M	M
CO3	M	Н	M	S	Н
CO4	S	Н	S	M	M

18UPA1A1

Programm	e Code : 15	B.Com PA		
Course Code: 18UPA1A1		BUSINESS MATHEMATICS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	I	6	90	5

Course Objectives

- 1. On successful completion of this course, the student should have understood the basic concepts.
- 2. To use Mathematical Techniques to solve the modern business problems.
- 3. To enable the students to apply basic mathematical knowledge to solve the real life business problems.

Course Outcomes (CO)

K1	CO1	Remembering the basic concepts of mathematics in business analysis
K2	CO2	Understanding the concepts of mathematics in finance
К3	CO3	Applying basic mathematical calculations in business problems
K4	CO4	Analyzing the business conditions using Differentiation and Integration

Syllabus

UNIT I (18 hours)

Set Theory* – Arithmetic and Geometric Series – Simple and Compound Interest – Effective rate of Interest –Sinking Fund – Annuity - Present Value – Discounting of Bills – True Discount – Banker's Gain.

UNIT II (18 hours)

Matrix: Basic Concepts – Addition and Multiplication of Matrices – Inverse of a Matrix – Rank of Matrix – Solution of Simultaneous Linear Equations – Input-Output Analysis.

UNIT III (18 hours)

Variables, Constants and Functions – Limits of Algebraic Functions – Simple Differentiation of Algebraic Functions – Meaning of Derivations – Evaluation of First and Second Order Derivatives –Maxima and Minima – Application to Business Problems.

18UPA1A1

UNIT IV (18 hours)

Elementary Integral Calculus – Determining Indefinite and Definite Integrals of simple Functions –Integration by Parts.

UNIT V (18 hours)

Linear Programming Problem – Formation – Solution by Graphical Method – Solution by Simplex Method.

* denotes Self Study(Questions for Examination may be taken from the Self Study Portion also).

Teaching Methods

Chalk and Talk, PowerPoint presentation, Assignment, Seminar.

Text Book:

P.A. Navaneetham" Business Mathematics and Statistics", Jai Publishers, 2007.

Reference Books:

- 1.Sundaresan and Jayaseelan, "Introduction to Business Mathematics", Sultan chand Co& Ltd, New Delhi
- 2. Sanchetti, D.C and Kapoor, V.K, "Business Mathematics", Sultan chand Co& Ltd, New Delhi
- 3.G.K.Ranganath, C.S.Sampamgiram and Y.Rajan —"Business Mathematics"- Himalaya Publishing House.

18UPA1A1

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	M	M	S	Н
CO2	S	S	Н	M	M
CO3	M	Н	M	S	Н
CO4	S	Н	S	M	M

18UCC1A1

Programm	e Code :14		B.Com CA	
Course Code: 18UCC1A1		BUSINESS MATHEMATICS		
Batch 2018-2021	Semester I	Hours / Week	Total Hours 90	Credits 5

Course Objectives

- 1. To give basic knowledge about Mathematical concepts
- 2. To solve the modern business problems using various mathematical techniques
- 3. To enable the students to apply basic mathematical knowledge to solve the real life business problems.

Course Outcomes (CO)

K1	CO1	Remembering the basic concepts of mathematics in business analysis
K2	CO2	Understanding the concepts of mathematics in finance
К3	CO3	Applying basic mathematical calculations in business problems
K4	CO4	Analyzing the business conditions using Differentiation and Integration

Syllabus

UNIT I (18 Hours)

Set Theory – Arithmetic and Geometric series – Simple and Compound Interest – Effective rate of Interest – Sinking Fund – Annuities – Discounting of Bills.

UNIT II (18 Hours)

Matrix: Basic Concepts – *Addition of matrices and Multiplication of matrices – Inverse of a matrix – Rank of a matrix – Solution of Simultaneous Linear equations (Cramer's rule and Inverse Matrix method) – Input – Output Analysis.

UNIT III (18 Hours)

Variables, Constants and Functions - Limits of Algebraic functions - Differentiation of functions (algebraic, exponential and logarithmic) - Meaning of Derivatives - Evaluation of First and Second order derivatives - Applications to business problems: Marginal Concepts-Elasticity-Increasing and decreasing functions-Maxima and minima.

18UCC1A1

UNIT IV (18 Hours)

Elementary Integral Calculus - Determining indefinite and definite integrals of algebraic, exponential and logarithmic functions - Method of partial fractions- Integration by parts-Uses in Economics.

UNIT V (18 Hours)

Linear Programming Problems – Formulation of LPP – Solving LPP by Graphical method – Standard and Canonical form of LPP- Solving LPP by Simplex method(less than or equal to constraints only)

* denotes Self Study (Questions for Examination may be taken from the Self Study Portion also).

Teaching Methods

Chalk and Talk, PowerPoint presentation, Seminar, Assignment.

Text Book:

1. P.A. Navaneetham"Business Mathematics and Statistics", Jai Publishers, 2007.

Reference Books:

- 1. Dr. P.R. Vittal- "Business Mathematics and Statistics", Margham Publications, 6thedition, 2006.
- 2. A.V.Dharmapadam "Business Mathematics", S.Viswanathan Publications, 1st edition, 1979.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	M	M	S	Н
CO2	S	S	Н	M	M
CO3	M	Н	M	S	Н
CO4	S	Н	S	M	M

18UCS2A2

Programm	e Code : 11	B.Sc Computer Science		
Course Code: 18UCS2A2		ALLIED 2 - OPERATIONS RESEARCH		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	II	6	90	5

Course Objectives

- 1. To understand the various mathematical applications in industries and decision making for real time environment.
- 2. To gain the knowledge about the principles and applications of operations research.
- 3. To develop skills necessary to effectively analyze and synthesize the inter-relationships inherent in complex socio-economic productive systems.

Course Outcomes (CO)

K1	CO1	Remembering mathematical formulation of the problem.
K2	CO2	Understanding the notions of linear programming in solving
		transportation problems and Assignment Problems.
K3	CO3	Applying the fundamental concept of inventory control and Queuing
		theory.
K4	CO4	Analyzing CPM and PERT techniques, to plan, schedule, and control project activities.

Syllabus

UNIT I (18 Hours)

Linear programming: Introduction - Mathematical formulation of the problem - Graphical solution - General form of LPP - Canonical & standard forms of LPP * - Simplex method - Big M method - Two phase simplex method.

UNIT II (18 Hours)

Transportation problem: Mathematical formulation of the problem - Initial basic feasible solution (Matrix minimum method , North -west corner rule & VAM) - Moving towards optimality - Unbalanced transportation problems.

Assignment problem: Mathematical formulation of an assignment problem - Hungarian assignment method - Unbalanced Assignment problems.

18UCS2A2

UNIT III (18 Hours)

Inventory control: Introduction - various costs involved in Inventory - EOQ models with and without shortage - Buffer stock & reorder level- EOQ problems with price -breaks.

UNIT IV (18 Hours)

Replacement problems: Introduction- Replacement of equipments that deteriorates gradually: Value of money does not change with time –Value of money changes with time- to find the optimal Replacement Policy - Replacement of equipment that fails suddenly.

PERT-CPM: Introduction - Rules of network construction - CPM and PERT calculations.

UNIT V (18 Hours)

Queuing theory: Introduction - characteristics of Queuing system- Traffic Intensity - classification of Queues - Problems from single server infinite & finite population model.

Derivations not included.

* - denotes Self Study (Questions for examinations may be taken from the self study portions also).

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Assignment.

Text Book:

Kanti Swarup, P.K Gupta & Man Mohan, "Operations Research", Sultan chand publications, 9th Edition, 2002. New Delhi.

Reference Books:

- 1. P.K.Gupta & ManMohan, "Problems in Operations Research" Sultan Chand Publications, 6th Edition, 1994, New Delhi.
- 2. Hamdy A.Taha, "Operations Research", Pearson Education, 7th Edition, 2002.

18UCS2A2

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	Н	M	Н	Н
CO2	Н	M	S	S	M
CO3	M	S	Н	Н	S
CO4	S	M	S	Н	S

18UIT2A2

Programm	e Code :12	B.Sc Information Technology			
Course Code: 18UIT2A2		COMPUTER ORIENTED NUMERICAL &			
		STATISTICAL METHODS			
Batch Semester		Hours / Week	Total Hours	Credits	
2018-2021	II	6	90	5	

Course Objectives

- 1. To have indepth knowledge of various advanced methods in numerical analysis and statistics.
- 2. To get numerical solutions of equations like transcendental and non linear differential equations when ordinary analytical methods fail.
- 3. To learn fundamentals and concepts of statistical methods, in particular, with reference to frequency distribution and measures of central tendency, measures of dispersion, Correlation and Regression.

Course Outcomes (CO)

K1	CO1	Remembering the concept of numerical and statistical methods
K2	CO2	Understanding the concepts of numerical differentiation and
		integration
K3	CO3	Applying an appropriate numerical method for solving algebraic or
		transcendental equation
K4	CO4	Analyzing the concept of Measure of central tendency, Measures of
		dispersion, Correlation and Regression

Syllabus

UNIT I (18 Hours)

The Solution of Numerical Algebraic & Transcendental Equations: Bisection method –Newton-Raphson method - The method of false position.

The Solution of Simultaneous Linear Algebraic Equation: Gauss Elimination method –Gauss-Jordon method – Gauss-Seidal method – Gauss-Jacobi method.

UNIT II (18 Hours)

Interpolation: Newton forward interpolation – Newton backward interpolation – Lagrange's method. Numerical solution of ordinary differential equations: Taylor method –Euler method – Runge- Kutta method.

18UIT2A2

UNIT III (18 Hours)

Numerical Differentiation: Newton's Forward Difference to find derivative - Newton's backward difference to find derivative. Numerical Integration: Trapezoidal rule - Simpson's 1/3rd rule -Simpson's 3/8 rule.

UNIT IV (18 Hours)

Measures of central tendency: Mean, Median, Mode, Geometric mean, Harmonic mean. Measures of Dispersion: *Range –Quartile deviation- standard deviation-coefficient of variation.

UNIT V (18 Hours)

Correlation: Meaning and definition - Types- Scatter diagram- Karl Pearson coefficient of correlation- Rank correlation. Regression: Meaning and definition- Regression equation of two variables - Difference between correlation and Regression.

*denotes Self Study (Questions for examinations may be taken from this Portions also).

Teaching Methods

Chalk and Talk, Power Point Presentations, Seminar, Assignment.

Text Books:

- 1. P. Kandasamy, K. Thilagavathi, K. Gunavathi "Numerical Methods", S.Chand & company Ltd. New Delhi Revised Edition 2005 (UNIT I, II & III)
- 2. R. S. N. Pillai, V. Bagavathi, "Statistics", Sultan Chand and Sons & Company Ltd. New Delhi. Reprint 2005. (UNIT IV & V).

Reference Book:

V. Rajaraman, "Computer Oriented Numerical Methods", PHI Pub,2008.
 S C Gupta, V. K. Kapoor, "Fundamental Of Mathematical Statistics", Sultan Chand and Sons, 2010.

18UIT2A2

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	S	S	M	S
CO2	Н	S	M	S	M
CO3	S	M	M	Н	Н
CO4	S	M	S	S	M

18UBT4A4

Programm	e Code :08	B.Sc Biotechnology			
Course Code: 18UBT4A4		C PROGRAMMING AND NUMERICAL METHODS			
Batch 2018-2021	Semester IV	Hours / Week 5	Total Hours 75	Credits 4	

Course Objectives

- 1. To understand the C Programming language.
- 2. To solve the mathematical problems using C Programs.
- 3. To learn the problem solving techniques in Numerical methods.

Course Outcomes (CO)

K1	CO1	Remember the functioning of C Programming
K2	CO2	Understand the various features of a C Program
K3	CO3	Apply the operators and functions to solve the Mathematical problems
K4	CO4	Analyze the accuracy of the results obtained

Syllabus

UNIT I (12 Hours)

Introduction-Constants-Variables and Data Types-Operators: arithmetic ,relational, logical, assignment, increment and decrement, conditional, bitwise, special-arithmetic expressions-evaluation of expressions-Mathematical functions. Managing Input and Output operators-

UNIT II (12 Hours)

Introduction —reading a character writing a character —formatted input-formatted output. Decision making and branching: Introduction-IF,IF ELSE, Nesting of IF ELSE,ELSE IF,The ELSE IF ladder-The Switch statement-?: operator-GOTO statement.

UNIT III (12 Hours)

Decision making and Looping-Introduction-WHILE, DO, FOR statements-*Jumps in loops.

Arrays: Introduction-One dimensional-Two dimensional- Initializing two dimensional arrays. Structures and Unions: Definition and initializing structure variable – Array of structure.

18UBT4A4

UNIT IV (12 Hours)

Solution of simultaneous linear algebraic equations: Gauss elimination method, Gauss Jordan method, Gauss Jacobi method, Gauss seidal method, Computation of inverse of matrix using Gauss elimination method.

UNIT V (12 Hours)

Interpolation: Newton Forward & Backward interpolation-Newton's Interpolation formula for unequal intervals- Lagrange's method. Numerical Integration: Trapezoidal rule-Simpson's 1/3rd rule-Simpson's 3/8 rule.

* denotes Self Study (Questions for Examination may be taken from the Self Study Portion also)

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Assignment.

Text Books:

- 1.E. Balagurusamy ,"Programming In Ansi C", 7th Edition. Tata McGraw-Hill Publishing Co. Pvt. Ltd.2008.
- 2. Dr.M.K. Venkatraman, "Numerical Methods In Science And Engineering" The National Publishers Co., 5th edition 2009 (For units IV and V).

Reference Books:

- 4. V.Rajaraman, "Computer Programming In C" Prentice Hall of India, New Delhi, 2009.
- 5. P. Kandasamy, K. Thilagavathi, K. Gunavathi, "Numerical Methods" S.Chand & company Ltd. New Delhi Revised Edition 2005.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	M	Н	M	M	Н
CO2	Н	S	Н	Н	M
CO3	S	S	Н	Н	Н
CO4	S	S	S	Н	S

18UBT4AL

Programme Code: 08		B.Sc Biotechnology		
Course Code: 18UBT4AL		C PROGRAMMING - Lab		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	IV	2	30	2

Course Objectives

- 1. To provide practical experience for the students to understand the structure of a C Program.
- 2. To enable the students to enrich their knowledge in the compilation of C Programs.
- 3. To solve mathematical problems using C Programs.

Course Outcomes (CO)

K3	CO1	Apply the various operators and functions of C language in
		Programs
K4	CO2	Analyze the various data types and formatting features available
		in C language
K5	CO3	Determine the solution of mathematical problems using C
		Programs

List of Practical

- 1. Program to find the mean.
- 2. Program to find the median.
- 3. Program to find the correlation.
- 4. Program to find the regression.
- 5. Program to find the standard deviation.
- 6. Program to find the sum and difference of the given matrices.
- 7. Program to find the multiplication of matrices.

UMA 142

18UBT4AL

- 8. Program to find the trace of a matrix.
- 9. Program to convert temperature in Fahrenheit to Celsius and vice versa.
- 10. Program to convert months into days and vice versa.

Distribution of Marks in ESE			<u>CIA</u>		
Experiment	:	25	CIA Practical	:	10
Record	:	05	Exam		
			Attendance	:	05
	Total	30	Observation Note	:	05
			book		
			Total		20

To be awarded jointly by the internal and external examiners.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S	S	Н	M	Н
CO2	Н	Н	M	M	M
CO3	S	S	M	M	Н

18UCM4A4

Programme Code : 13		B.Com		
Course Code: 18UCM4A4		BUSINESS STATISTICS		
Batch 2018-2021	Semester IV	Hours / Week Total Hours Cree		Credits 5

Course Objectives

- 1. To demonstrate understanding of basic concepts of probability and statistics embedded in their courses
- 2. Statistics in the social sciences involves the collection, analysis, interpretation, and Presentation of data to answer questions about the social world.
- 3. To Perform Correlation & Compute the equation of simple regression line from a sample data and the intercept of the equation

Course Outcomes (CO)

K1	CO1	Select appropriate Statistical techniques for summarizing and displaying business data.
		Understand the measures of central tendency, symmetrical and
K2	CO2	asymmetrical distribution
K3	CO3	Identify and carryout basic statistical analyses used in sociological inquiry.
K4	CO4	Analyze and draw inferences from business data using appropriate statistical methods.

Syllabus

UNIT I (18 Hours)

Meaning and Scope of Statistics - Sources of data* - Collection of data: Primary and Secondary data - Classification and Tabulation - Presentation of data by diagrams - Bar diagram and Pie diagram - Graphic representation - Frequency distribution.

UNIT II (18 Hours)

Method of Central Tendency: Mean, Median, Mode, Geometric mean and harmonic mean - their computation - properties and uses - Measures of dispersion: Range, quartile deviation, standard deviation and co-efficient of variation.

18UCM4A4

UNIT III (18 Hours)

Skewness: Meaning- Bowley's and Pearson's Co-efficient of Skewness – Correlation - meaning and definition - scatter diagram - Pearson's correlation co-efficient - Rank correlation – Regression: Meaning of regression - regression in two variables.

UNIT IV (18 Hours)

Interpolation: Newton, Lagrange's and binomial methods - Index numbers - meaning – Uses - Methods of construction - Aggregative and relative types - Tests of an index number: Time Reversal test and Factor Reversal test - Cost of living index .

UNIT V (18 Hours)

 $\label{temperature} Time\ Series-Meaning-Components-Models\ -\ Business\ forecasting\ -\ Methods\ of\ estimating\ trend\ -\ graphic,\ semi-average,\ moving\ average\ and\ least\ square\ method\ -\ Seasonal\ Variation\ :\ Method\ of\ Simple\ Average\ .$

* denote Self Study (Questions for Examination may be taken from the Self Study Portion also).

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Assignment.

Text Book:

P.A. Navaneetham "Business Mathematics and Statistics", Jai Publishers, 2007.

Reference Books:

- 1. S.P. Gupta "Statistical Methods", Sultan Chand & sons, 21st edition,2003.
- 2. R.S.N Pillai & V.Bagavathi "Statistics", S. Chand & Co Ltd, 7th edition.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	M	S	S	Н
CO2	M	Н	S	M	S
CO3	S	Н	M	Н	M
CO4	Н	S	Н	S	Н

18UCC2A2

Programme Code :14		B.Com CA		
Course Code: 18UCC2A2		BUSINESS STATISTICS		
Batch	Semester	Hours / Week Total Hours C		Credits
2018-2021	II	6	90	5

Course Objectives

- 1. To give basic knowledge about statistical concepts.
- 2. To solve the modern business problems using various statistical techniques
- 3. To estimate the mean and standard deviation of the marginal distribution of the response variable and use this information to inform a business decision

Course Outcomes (CO)

K1	CO1	Select appropriate Statistical techniques for summarizing and
		displaying business data
K2	CO2	Interpret correlation coefficients and Formulate regression line by
		identifying dependent and independent variables.
K3	CO3	Identify and carryout basic statistical analyses used in sociological
		inquiry.
K4	CO4	Analyze and draw inferences from business data using appropriate
		statistical methods.

Syllabus

UNIT I (18 Hours)

Meaning and Scope of Statistics - Sources of data* - Collection of data: Primary and Secondary data - Classification and Tabulation - Presentation of data by diagrams - Bar diagram and Pie diagram - Graphic representation - Frequency distribution.

UNIT II (18 Hours)

Method of Central Tendency: Mean, Median, Mode, Geometric mean and harmonic mean - their computation - properties and uses - Measures of dispersion: Range, quartile deviation, standard deviation and co-efficient of variation.

UNIT III (18 Hours)

Skewness: Meaning- Bowley's and Pearson's Co-efficient of Skewness – Correlation - meaning and definition - scatter diagram - Pearson's correlation co-efficient - Rank correlation – Regression: Meaning of regression - regression in two variables.

18UCC2A2

UNIT IV (18 Hours)

Interpolation: Newton, Lagrange's and binomial methods - Index numbers - meaning – Uses - Methods of construction - Aggregative and relative types - Tests of an index number: Time Reversal test and Factor Reversal test - Cost of living index .

UNIT V (18 Hours)

Time Series – Meaning – Components – Models - Business forecasting - Methods of estimating trend - graphic, semi-average, moving average and least square method - Seasonal Variation : Method of Simple Average .

* denotes Self Study (Questions for Examination may be taken from the Self Study Portion also).

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Assignment.

Text Book:

P.A. Navaneetham "Business Mathematics and Statistics", Jai Publishers, 2007.

Reference Books:

- 1. S.P. Gupta "Statistical Methods", Sultan Chand & sons, 21st edition,2003.
- 2. R.S.N Pillai & V.Bagavathi "Statistics", S. Chand & Co Ltd, 7th edition.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	Н	M	S	S	Н
CO2	M	Н	S	M	S
CO3	S	Н	M	Н	M
CO4	Н	S	Н	S	Н

18UPA2A2

Programme Code : 15		B.Com PA		
Course Code: 18UPA2A2		STATISTICS FOR BUSINESS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2021	II	6	90	5

Course Objectives

- 1. To give basic knowledge about statistical concepts.
- 2. To solve the modern business problems using various statistical techniques
- 3. To estimate the mean and standard deviation of the marginal distribution of the response variable and use this information to inform a business decision

Course Outcomes (CO)

K1	CO1	Choose a statistical method for solving practical problems.
K2	CO2	Understand and use the basic measure of central tendency.
K3	CO3	Identify different types of statistical data.
K4	CO4	Classify the structure and characteristics of statistical data.

Syllabus

UNIT I (18 hours)

Meaning and Definition of Statistics – Collection of data — **Primary and Secondary*** - Classification and Tabulation – Diagrammatic and Graphical presentation. Measures of Central tendency – Mean, Median, Mode, Geometric Mean and Harmonic Mean –simple problems

UNIT II (18 hours)

Measures of Dispersion – Range, Quartile Deviation, Mean Deviation, Standard Deviation and Co-efficient of Variation. Skewness – Meaning – Measures of Skewness - Pearson's and Bowley's co-efficient of Skewness.

UNIT III (18 hours)

Correlation –Meaning and Definition –Scatter diagram, Karl Pearson's co-efficient of Correlation, Spearman's Rank Correlation, Co-efficient of Concurrent deviation. Regression Analysis – Meaning of regression and linear prediction – Regression in two variables – Uses of Regression

18UPA2A2

UNIT IV (18 hours)

Time Series – Meaning, Components and Models – Business forecasting – Methods of estimating trend – Graphic, Semi-average, Moving average and Method of Least squares – Seasonal Variation – Method of Simple average. Index Numbers – Meaning, Uses and Methods of construction – Un-weighted and Weighted index numbers – Tests of an Index number – Cost of living index number.

UNIT V (18 hours)

Interpolation: Binomial, Newton's and Lagrange methods. Probability – Concept and Definition – Addition and Multiplication theorems of Probability (statement only) – simple problems based on Addition and Multiplication theorems only.

* denotes Self Study (Questions for examinations may be taken from the self study portions also).

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Assignment.

Text Book:

Navanitham, P.A, "Business Mathematics & Statistics" Jai Publishers, Trichy-21

Reference Books:

- 1. Statistical Methods by S.P. Gupta
- 2. Statistics by R.S.N. Pillai and V. Bagavathi
- 3. Statistics-Theory, Methods & Application by D.C. Sancheti and V.K. Kapoor
- 4. Applied General Statistics by Frederick E.Croxton and Dudley J. Cowden

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	Н	M	S	S	Н
CO2	M	Н	S	M	S
CO3	S	Н	M	Н	M
CO4	Н	S	Н	S	Н

18UBB2A2

Programn	ne Code :16	BBA			
Course Code : 18UBB2A2		MATHEMATICS FOR MANAGEMENT - II			
Batch	Semester	Hours / Week	Total Hours	Credits	
2018-2021	II	6	90	5	

Course Objectives

- 1. To understand various mathematical applications in industries.
- 2. To know the mathematical tools that are needed to solve optimization Problems.
- 3. To understand the Decision making for real time environment.

Course Outcomes (CO)

K1	CO1	Remembering to use the variables for formulating mathematical models
		in management.
K2	CO2	Understanding the concept of Transportation and Assignment models
К3	CO3	Applying the fundamental concept of Queuing theory.
K4	CO4	Analyzing CPM and PERT techniques, to plan, schedule, and control project activities.

Syllabus

UNIT I (18 Hours)

Introduction to Operations Research - Mathematical Formulation of a Problem - Graphical solution Method - General Linear Programming problem - Canonical and standard forms of LPP - Simplex Method- Big M method

UNIT II (18 Hours)

The Transportation problem: Mathematical formulation of the problem - Initial basic feasible solution - North West Corner rule - Matrix minima method - Vogel's approximation method- Moving towards optimality - Unbalanced transportation problems.

Assignment problem: Mathematical formulation of assignment problem. Hungarian assignment

Assignment problem: Mathematical formulation of assignment problem - Hungarian assignment method - Unbalanced Assignment problems.

18UBB2A2

UNIT III (18 Hours)

Game theory: Introduction - Two Person zero Sum Game - The Maximin - Minimax Principle - Games without saddle points - mixed Strategies - Solution of 2x2 Rectangular Games - Graphical method - Dominance Property.

UNIT IV (18 Hours)

Replacement problems: Introduction - Replacement of Equipment that deteriorates gradually - Replace of Equipment that fails suddenly.

Queuing Theory: Introducing - Characteristic of Queuing system - symbols and Notations - Problems in (M/M/1): $(\infty/FIFO)$.

UNIT V (Derivations not included.)

(18 Hours)

PERT-CPM: Introduction - **Rules of network construction*** - critical path method - Programme Evaluation and Review technique (PERT) calculations.

* denotes Self Study (Questions for examinations may be taken from the self study portions also)

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Quiz and Assignment.

Text Book:

Kanti Swarup, P.K.Gupta & Manmohan, "Operations Research," Sultan & Sons, New Delhi, 14th Edition, 2008.

Reference Book:

J. K. Sharma, "Operations Research Theory & Applications", Macmillan India Ltd., 4th Edition, 2010.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	S	Н	M	L
CO2	S	Н	Н	M	S
CO3	S	Н	Н	L	M
CO4	S	M	Н	Н	S

18UBA2A2

Programn	ne Code :17	BBA CA			
Course Code	: 18UBA2A2	MATHEMATICS FOR MANAGEMENT - II			
Batch	Semester	Hours / Week	Total Hours	Credits	
2018-2021	II	6	90	5	

Course Objectives

- 1. To understand various mathematical applications in industries.
- 2. To know the mathematical tools that are needed to solve optimization Problems.
- 3. To understand the Decision making for real time environment.

Course Outcomes (CO)

K1	CO1	Remembering to use the variables for formulating mathematical models
		in management.
K2	CO2	Understanding the concept of Transportation and Assignment models
К3	CO3	Applying the fundamental concept of Queuing theory.
K4	CO4	Analyzing CPM and PERT techniques, to plan, schedule, and control
		project activities.

Syllabus

UNIT I (18 Hours)

Introduction to Operations Research - Mathematical Formulation of a Problem - Graphical solution Method - General Linear Programming problem - Canonical and standard forms of LPP - Simplex Method- Big M method

UNIT II (18 Hours)

The Transportation problem: Mathematical formulation of the problem - Initial basic feasible solution - North West Corner rule - Matrix minima method - Vogel's approximation method- Moving towards optimality - Unbalanced transportation problems.

Assignment problem: Mathematical formulation of assignment problem - Hungarian assignment method - Unbalanced Assignment problems.

18UBA2A2

UNIT III (18 Hours)

Game theory: Introduction - Two Person zero Sum Game - The Maximin - Minimax Principle - Games without saddle points - mixed Strategies - Solution of 2x2 Rectangular Games - Graphical method - Dominance Property.

UNIT IV (18 Hours)

Replacement problems: Introduction - Replacement of Equipment that deteriorates gradually - Replace of Equipment that fails suddenly.

Queuing Theory: Introducing - Characteristic of Queuing system - symbols and Notations - Problems in (M/M/1): $(\infty/FIFO)$.

UNIT V (Derivations not included.)

(18 Hours)

PERT-CPM: Introduction - **Rules of network construction*** - critical path method - Programme Evaluation and Review technique (PERT) calculations.

* denotes Self Study (Questions for examinations may be taken from the self study portions also)

Teaching Methods

Chalk and Talk, Power point Presentations, Seminar, Quiz and Assignment.

Text Book:

Kanti Swarup, P.K.Gupta & Manmohan, "Operations Research," Sultan & Sons, New Delhi, 14th Edition, 2008.

Reference Book:

J. K. Sharma, "Operations Research Theory & Applications", Macmillan India Ltd., 4th Edition, 2010.

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
co					
CO1	S	S	H	M	L
CO2	S	Н	Н	M	S
CO3	S	Н	Н	L	M
CO4	S	M	Н	Н	S