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Abstract
In our article, we are primarily concentrating on approx-

imate controllability results for fractional Sobolev type

Volterra-Fredholm integro-differential inclusions of order

1< r< 2. By applying the results and ideas belongs to the

cosine function of operators, fractional calculus and fixed

point approach, the main results are established. Initially,

we establish the approximate controllability of the consid-

ered fractional system, then continue to examine the system

with the concept of nonlocal conditions. In the end, we

present an example to demonstrate the theory.
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1 INTRODUCTION

Fractional calculus, as a significant area of Mathematics, was initiated in 1695. It was nearly simulta-

neously as classical calculus. Recently, the ideas about fractional calculus became effectively applied

to different regions, and the investigators progressively found that the fractional calculus can well por-

tray several non-local events in the areas of natural science and architecture. Presently, the mainstream
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2 VIJAYAKUMAR ET AL.

areas of fractional calculus containing rheology, liquid stream, diffusive transport likened to disper-

sion, dynamical cycles in self-comparable and porous structures, viscoelasticity, and, optics, etc. The

effective utilization of the fractional systems in these areas has incited several researchers to contem-

plate their mathematical estimate strategies, as the diagnostic arrangements are commonly hard to get.

For interesting results related to fractional dynamical systems, the readers may refer to the books [1–4]

and the articles [5–19].

Control theory is a significant region of utilization situated in Mathematics which manages the

structure and examination of control frameworks. Recently, controllability concerns for different sorts

of nonlinear dynamical frameworks in infinite dimensional spaces became examined in numerous

research articles by utilizing various types of techniques. A broad list of these distributions can be

discovered in [6, 9, 11–16, 18–24, 43, 44–50]. The studies about existence and controllability related

to fractional evolution system of order 1<𝛼 < 2 attracted many researchers and one can review the

articles [10, 17, 25–33]. The study related to approximate controllability results for fractional Sobolev

type Volterra-Fredholm integro-differential inclusions having order 1< r< 2 have not been discussed

yet and it gives the additional motivation for writing this article.

Motivated by the theory developed in the works mentioned previously, our objective in this article

is to discuss the approximate controllability of Sobolev type Volterra-Fredholm integro-differential

inclusions of fractional order r ∈ (1, 2) of the form

CDr
𝜚 (Jz (𝜚)) ∈ Az (𝜚)+ℬ x (𝜚)+E

(
𝜚, z (𝜚) ,∫

𝜚

0

e (𝜚, s, z (s)) ds,∫
c

0

h (𝜚, s, z (s)) ds
)
, 𝜚 ∈ V = [0, c] ,

(1.1)

z (0) = z0, z′ (0) = z1 ∈ 𝒴 , (1.2)

where z(⋅) takes values in 𝒴 and 𝒴 is a Hilbert space; CDr
𝜚 represents fractional derivative in Caputo

sense of order r ∈ (1, 2), and the control function x (⋅) ∈ L2 (V ,𝒰), a Hilbert space of admissible

control functions. A is the infinitesimal generator of a C0− cosine family {C(𝜚)}𝜚≥ 0 on 𝒴 . ℬ is a

bounded linear operator from 𝒰 → 𝒴 . Here D = {(𝜚, s)∈V ×V : s≤ 𝜚}, e, h ∶ D × 𝒴 → 𝒴 are

continuous, and E ∶ V ×𝒴 ×𝒴 ×𝒴 → 2𝒴∖
{
∅
}

satisfying some conditions.

The arrangement of our article as follows: In Section 2, we recollect several fundamental defini-

tions and few well-known results belong to fractional calculus and multivalued maps. In Section 3, we

present the approximate controllability of (1.1)–(1.2) and in Section 4, we examine the system with

concept of nonlocal conditions. In Section 5, the theory is validated with suitable example.

2 BASIC FACTS

We now recollect few well-known results and definitions for proving our main results of this article.

Assume that C (V ,𝒴 ) ∶ V → 𝒴 be the Hilbert space of continuous functions along with

||z || = sup𝜚∈V || z(𝜚)||, z ∈ C (V ,𝒴 ). Denote D(A), R(A) be the domain and range of A. ρ(A) stands for

the resolvent set of A and we define the resolvent as follows:

R (Λ,A) = (ΛI − A)−1 ∈ Lc (𝒴 ) .

A measurable function g ∶ V → 𝒴 is Bochner’s integrable provided ||g|| is Lebesgue. Let

Lp (V ,𝒴 ) (p≥ 1) be the Hilbert space of measurable functions endowed along with

‖g‖p =
(
∫V

‖g (𝜚) ‖p𝑑𝜚

) 1

p

.
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We now present the linear operators A ∶ D (A) ⊂ 𝒴 → 𝒴 and J ∶ D (A) ⊂ 𝒴 → 𝒴 satisfy the

following properties established in [34]:

(E1) D(J)⊂D(A) and J is bijective.

(E2) The operators A and J are closed linear operators.

(E3) J−1 ∶ 𝒴 → D (J) is continuous.

Additionally, because of (E1) and (E2), J−1 is closed, by (E3) and by referring the closed graph

theorem, AJ−1 ∶ 𝒴 → 𝒴 is bounded. Denote ‖J−1‖ = J̃1 and ‖J‖ = J̃2.

By referring [1], we introduce definitions and remarks belongs to fractional calculus.

Definition 2.1 The integral of fractional order 𝜈 for the function f : [0,∞)→R with

lower limit zero is given by

I𝜈 f (𝜚) = 1

Γ (𝜈) ∫
𝜚

0

f (𝜄)
(𝜚 − 𝜄)1−𝜈

d𝜄, 𝜚 > 0, 𝜈 ∈ R
+.

Definition 2.2 The R-L derivative of order ν for the function f : [0,∞)→R having

lower limit zero is given by

LD𝜈 f (𝜚) = 1

Γ (n − 𝜈)
𝑑n

𝑑𝜚n ∫
𝜚

0

f (n) (𝜄)
(𝜚 − 𝜄)𝜈+1−n d𝜄, 𝜚 > 0, n − 1 < 𝜈 < n, 𝜈 ∈ R

+.

Definition 2.3 The Caputo derivative of order 𝜈 for the function f having lower limit

zero is given by

CD𝜈 f (𝜚) =LD𝜈

(
f (𝜚) −

n−1∑
j=0

f (j) (0)
j!

𝜚j

)
, 𝜚 > 0, n − 1 < 𝜈 < n, 𝜈 ∈ R

+.

Remark 2.4 (1) If f (𝜚)∈Cn[0,∞), then

CD𝜈 f (𝜚) = 1

Γ (n − 𝜈) ∫
𝜚

0

f (n) (𝜄)
(𝜚 − 𝜄)𝜈+1−n d𝜄 = In−𝜈 f (n) (𝜚) , 𝜚 > 0, n − 1 < 𝜈 < n.

(2) The above integrals are considered in Bochner’s sense if the function g is abstract with

values belonged to 𝒴 .

(3) The Caputo derivative of a constant function is equal to zero.

Definition 2.5 [35] The operator {C (𝜚)}
𝜚∈R ∶ 𝒴 → 𝒴 is called a strongly continuous

cosine family if and only if

(a) C(𝜄+ 𝜚)+C(𝜄− 𝜚) = 2C(𝜄)C(𝜚), for all 𝜄, 𝜚∈R;

(b) C(𝜚)z is strongly continuous on R for every z ∈ 𝒴 ;

(c) C(0) = I.

Assume that the sine family associated with {C(𝜚)}
𝜚∈R is {S(𝜚)}

𝜚∈R, where

S (𝜚) z = ∫
𝜚

0

C (𝜄) zd𝜄, z ∈ 𝒴 , 𝜚 ∈ R. (2.1)

Further, if (
Az = 𝑑2

𝑑𝜚2
C (𝜚) z

||||𝜚=0

, for all z ∈ D (A),

where

D (A) =
{

z ∈ 𝒴 ∶ C (𝜚) z ∈ C2 (R,𝒴 )
}
.
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Determine

G =
{

z ∈ 𝒴 ∶ C (𝜚) z ∈ C1 (R,𝒴 )
}
.

Clearly, A is a closed dense operator in 𝒴 , there exists a constant P≥ 1 if ‖N (𝜚) ‖Lc(𝒴 ) ≤ P, where

𝜚≥ 0. Let us fix a = r
2

for r ∈ (1, 2) which is discussed in [25, 33].

Definition 2.6 The upper semicontinuous (u.s.c) operator  on 𝒴 provided for all

z0 ∈ 𝒴 and  (z0) is a nonempty closed subset of 𝒴 , for each open set 𝒞 of 𝒴 including

 (z0), there exists an open neighborhood  of z0 with

 () ⊆ 𝒞 .

Definition 2.7  is completely continuous if  (𝒞 ) is relatively compact for each

bounded subset 𝒞 of 𝒴 . If  is completely continuous and nonempty, then  is u.s.c.,

if and only if  has a closed graph.  has a fixed point such that there exists z ∈ 𝒴 such

that z ∈  (z).

The fractional system (1.1)–(1.2) is similar to the following system

z (𝜚) = J−1z0J + J−1z1J𝜚

+ 1

Γ (r) ∫
𝜚

0

(𝜚 − 𝜄)r−1J−1

[
Az (𝜄) + E

(
𝜄, z (𝜄) ,∫

𝜄

0

e (𝜄, s, z (s)) ds,∫
c

0

h (𝜄, s, z (s)) ds
)]

d𝜄

+ 1

Γ (r) ∫
𝜚

0

(𝜚 − 𝜄)r−1J−1𝒴 x (𝜄) d𝜄. (2.2)

In view [36] and using Laplace transform, we introduce the solution of (1.1)–(1.2).

Definition 2.8 [36] A function z ∈  =  (V ,𝒴 ) is called a mild solution of (1.1)–(1.2)

if z(0) = z0, z′ (0) = z1, x (⋅) ∈ L2 (V ,𝒰) and there exists g ∈ L1 (V ,𝒴 ) such that g (𝜚) ∈
E
(
𝜚, z (𝜚) , ∫ 𝜚

0
e (𝜚, s, z (s)) ds, ∫ c

0
h (𝜚, s, z (s)) ds

)
on a.e. 𝜚∈V and

z (𝜚) = J−1Ma (𝜚) Jz0 + J−1Wa (𝜚) Jz1 + ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬx (𝜄) d𝜄

+ ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄) g (𝜄) d𝜄, (2.3)

where

Ma (𝜚) = ∫
∞

0

Sa (𝜌)C (𝜚a𝜌) d𝜌, Wa (𝜚) = ∫
𝜚

0

Ma (𝜄) d𝜄, Qa (𝜚) = ∫
∞

0

a𝜌Sa (𝜌) S (𝜚a𝜌) d𝜌,

Sa (𝜌) =
1

a
𝜌−1− 1

a 𝜁a

(
𝜌−

1

a

)
, 𝜁a (𝜌) =

1

𝜋

∞∑
n=1

(−1)n−1𝜌−na−1 Γ (na + 1)
n!

sin (n𝜋a) , 𝜌 ∈ (0,∞) ,

where Sa(⋅) is a probability density function defined on (0,∞) such that

Sa (𝜌) ≥ 0 where 𝜌 ∈ (0,∞) also ∫
∞

0

Sa (𝜌) d𝜌 = 1.

Remark 2.9 Clearly for n∈ [0, 1]

∫
∞

0

𝜌nSa (𝜌) d𝜌 = ∫
∞

0

𝜌−an𝜁 (𝜌) d𝜌 = Γ (1 + n)
Γ (1 + an)

.
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Lemma 2.10 [25]. Ma(𝜚), Wa(𝜚) and Qa(𝜚) satisfy the following properties:
(a) for all 𝜚≥ 0, Ma(𝜚), Wa(𝜚) and Qa(𝜚) are linear and bounded;
(b) ∀ z ∈ 𝒴 and for all 𝜚≥ 0, we have

‖Ma (𝜌) z‖ ≤ P‖z‖, ‖Wa (𝜌) z‖ ≤ P‖z‖𝜌, ‖Qa (𝜌) z‖ ≤ P
Γ (2a)

‖z‖𝜌a;

(c) {Ma(𝜚), 𝜚≥ 0}, {Wa(𝜚), 𝜚≥ 0} and {𝜚a− 1Qa(𝜚), 𝜚≥ 0} are strongly continuous.

Lemma 2.11 [35].
(i) If z∈G, subsequently S(𝜚)z∈D(A), also;

𝑑

𝑑𝜚
C (𝜚) z = AS (𝜚) z;

(ii) There exists P≥ 1, 𝜔≥ 0 such that ‖C (𝜚) ‖Lc(𝒴 ) ≤ Pe𝜔∣𝜌∣, for all 𝜚∈R;

(iii) ‖S (𝜚 + ℏ) − S (𝜚) ‖Lc(𝒴 ) ≤ P ∣ ∫ 𝜚+ℏ
𝜚

e𝜔∣𝜄∣d𝜄 ∣ for all 𝜚+ℏ, 𝜚∈R.

Lemma 2.12 Assume that {C(𝜚)}
𝜚∈R on 𝒴 , then

lim
𝜚→0

1

𝜚
S (𝜚) z = z

for some z ∈ 𝒴 .

Lemma 2.13 [35] Suppose {C(𝜚)}
𝜚∈R on 𝒴 satisfying ‖C (𝜚) ‖Lc(𝒴 ) ≤ Pe𝜔∣𝜚∣, 𝜚 ∈ R.

Subsequently for ReΛ>𝜔, Λ2 ∈ 𝜌(A). Additionally

ΛR
(
Λ2;A

)
z = ∫

∞

0

e−𝛬𝜚C (𝜚) zd𝜚, R
(
Λ2;A

)
z = ∫

∞

0

e−𝛬𝜚S (𝜚) zd𝜚, for z ∈ 𝒴 .

We present the essential operators and some useful results as follows:

Γc
0 = ∫

c

0

(c − 𝜄)a−1J−1Qa (c − 𝜄)ℬℬ∗J−1Q∗
a (c − 𝜄) d𝜄 ∶ 𝒴 → 𝒴 ,

R
(
𝜇,Γc

0

)
=
(
𝜇I + Γc

0

)−1 ∶ 𝒴 → 𝒴 ,

where ℬ∗, Q∗
a (c) stand for adjoints ℬ and Qa(c). Now, we come to an end that Γc

0 is bounded.

We start with the following assumption:

H0 𝜇R
(
𝜇,Γc

0

)
→ 0 as 𝜇→ 0+ in the strong operator topology.

In view of [22], H0 holds if and only if the linear fractional system{
CDr

0+ (Jz (𝜚)) ∈ Az (𝜚) + (ℬ x) (𝜚) , 𝜚 ∈ V ,
z (0) = z0, z′ (0) = z1 ∈ 𝒴 ,

(2.4)

is approximately controllable on V .

Lemma 2.14 [36]. Suppose BCC (𝒴 ) be the set of all nonempty, bounded, closed and
convex subset of 𝒴 , V be a compact real interval. Let E be a multivalued map satisfying
E ∶ V ×𝒴 → BCC (𝒴 ) is measurable to 𝜚 for every fixed z ∈ 𝒴 , u.s.c. to z for every
𝜚∈V, and for every z ∈ ,

SE,z =
{

g ∈ L1 (V ,𝒴 ) ∶ g (𝜚) ∈ E
(
𝜚, z (𝜚) ,∫

𝜌

0

e (𝜚, s, z (s)) ds,∫
c

0

h (𝜚, s, z (s)) ds
)
, 𝜚 ∈ V

}
is nonempty. Suppose  be linear continuous from L1 (V ,𝒴 )→ , then

◦SE ∶  → BCC () , z → (◦SE) (z) =  (
SE,z

)
,
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is a closed graph operator in  → .

Lemma 2.15 Suppose H be a closed, bounded and convex nonempty subset H of 𝒴 .
Assume  ∶ H → 2𝒴∖

{
∅
}

is upper semicontinuous with closed, convex values such that
 (H) ⊂ H and  (H) is compact, then  has a fixed point.

3 RESULTS ON APPROXIMATE CONTROLLABILITY

We here particularly focusing on approximate controllability of (1.1)–(1.2). Let us introduce the

important assumptions to discuss the primary theorems.

H1 For 𝜚≥ 0, {C(𝜚)} is compact.

H2 The function E ∶ V ×𝒴 ×𝒴 ×𝒴 → BCC (𝒴 ) is measurable to 𝜚, for all z ∈ 𝒴 , u.s.c. to z,

for all 𝜚∈V , and for all z ∈ 
SE,z =

{
g ∈ L1 (V ,𝒴 ) ∶ g (𝜚) ∈ E

(
𝜚, z (𝜚) ,∫

𝜚

0

e (𝜚, s, z (s)) ds,∫
c

0

h
(
𝜚, s, z (s)

)
ds
)
, 𝜚 ∈ V

}
,

is nonempty.

H3 For each (𝜚, s)∈D, the functions e (𝜚, s, ⋅) , h (𝜚, s, ⋅) ∶ 𝒴 → 𝒴 are continuous and for all

z ∈ 𝒴 , e (⋅, ⋅, z) , h (⋅, ⋅, z) ∶ D → 𝒴 are strongly measurable.

H4 For 𝛼 > 0, z ∈  along with ‖z‖ ≤ 𝛼, there exists v∈ (0, b) and Lg,𝛼 (⋅) ∈ L
1

v
(
V ,R+) such that

sup

{‖g‖ ∶ g (𝜚) ∈ E
(
𝜚, z (𝜚) ,∫

𝜚

0

e (𝜚, s, z (s)) ds,∫
c

0

h
(
𝜚, s, z (s)

)
ds
)} ≤ Lg,𝛼 (𝜚) ,

for almost everywhere 𝜚∈V .

H5 The function 𝜄→ (𝜚− 𝜄)a− 1Lg,𝛼(𝜄)∈ L1(V , R+) and there exists a constant 𝜆> 0 such that

lim
𝛼→∞

inf
∫ 𝜚

0
(𝜚 − 𝜄)a−1Lg,𝛼 (𝜄) d𝜄

𝛼
= 𝜆 < +∞.

For discussing the approximate controllability of (1.1)–(1.2), if for all 𝜇 > 0, there exists z (⋅) ∈ 
such that

z (𝜚) = J−1Ma (𝜚) Jz0 + J−1Wa (𝜚) Jz1 + ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄) g (𝜄) d𝜄

+ ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬ x (𝜄) d𝜄, g ∈ SE,z, (3.1)

x (𝜚) = ℬ∗J−1Q∗
a (c − 𝜚)R

(
𝜇,Γc

0

)
q (z (⋅)) , (3.2)

where

q (z (⋅)) = zc − J−1Ma (c) Jz0 − J−1Wa (c) Jz1 − ∫
c

0

(c − 𝜄)a−1J−1Qa (c − 𝜄) g (𝜄) d𝜄.

Theorem 3.1 Assume H0–H5 holds, subsequently (1.1)–(1.2) has a solution on V
provided

PJ̃1

Γ (2a)

[
1 + 1

𝜇

(
PJ̃1PB
Γ (2a)

)2
c2a

2a

]
𝜆 < 1, (3.3)
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where PB = ‖ℬ‖.

Proof . The fundamental point is to discover conditions for solvability of (3.1) and (3.2) for 𝜇 > 0.

Now, we prove  ∶  → 2 determined by

 (z) =
{

z ∈ ;m (𝜚) = J−1Ma (𝜚) Jz0 + J−1Wa (𝜚) Jz1 + ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄) g (𝜄) d𝜄

+ ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬ x (𝜄) d𝜄, g ∈ SE,z

}
,

has a fixed point. We subdivide our proof for simplicity:

Step 1: For all 𝜇 > 0, (z) is convex for all z ∈ . Suppose m1,m2 ∈ , then there exists g1,

g2 ∈ SE,z such that 𝜚∈V , we have

mi (𝜚) = J−1Ma (𝜚) Jz0 + J−1Wa (𝜚) Jz1 + ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄) gi (𝜄) d𝜄

+ ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬℬ∗J−1Q∗
a (c − 𝜚)R

(
𝜇,Γc

0

) [
zc − J−1Ma (c) Jz0 − J−1Wa (c) Jz1

− ∫
c

0

(c − 𝜑)a−1J−1Qa (c − 𝜑) gi (𝜑) d𝜑
]
(𝜄) d𝜄, i = 1, 2.

Let 0≤ 𝛽 ≤ 1, then for each 𝜌∈V we have

(𝛽m1 + (1 − 𝛽)m2) (𝜚) = J−1Ma (𝜚) Jz0 + J−1Wa (𝜚) Jz1 + ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)
[
𝛽g1 (𝜄)

+ (1 − 𝛽) g2 (𝜄)
]
d𝜄 + ∫

𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬℬ∗J−1Q∗
a (c − 𝜚)R

(
𝜇,Γc

0

) [
zc − J−1Ma (c) Jz0

− J−1Wa (c) Jz1 − ∫
c

0

(c − 𝜑)a−1J−1Qa (c − 𝜑)
[
𝛽g1 (𝜑) + (1 − 𝛽) g2 (𝜑)

]
d𝜑

]
(𝜄) d𝜄.

Since SE,z is convex, 𝛽m1 + (1− 𝛽)m2 ∈ SE,z. Hence 𝛽m1 + (1− 𝛽)m2 ∈(z).

Step 2: On the space , consider 𝛼 = {z ∈  ∶ ‖z‖ ≤ 𝛼, 0 ≤ 𝜚 ≤ c}, 𝛼 > 0. Clearly, 𝛼 is

bounded, closed and convex set of . For 𝜇 > 0, our property is that there exists 𝛼 > 0 such that

 (𝛼) ⊂ 𝛼.

If not, then for all 𝛼 > 0, there exists z𝛼 ∈ 𝛼 , but  (z𝛼) ∉ 𝛼 , i.e.,

‖ (z𝛼) ‖ ≡ sup {‖m𝛼‖ ∶ m𝛼 ∈ (z𝛼)} > 𝛼

and

m𝛼 (𝜚) = J−1Ma (𝜚) Jz0 + J−1Wa (𝜚) Jz1 + ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄) g𝛼 (𝜄) d𝜄

+ ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬ x𝛼 (𝜄) d𝜄,

for some g𝛼 ∈ SE,z𝛼 .

Using assumptions H3 and Lemma 2.10, we have

‖x𝛼 (𝜌) ‖ = ‖ℬ∗J−1Q∗
a (c − 𝜚)R

(
𝜇,Γc

0

)
q (z (⋅)) ‖

= ‖ℬ∗J−1Q∗
a (c − 𝜚)R

(
𝜇,Γc

0

) [
zc − J−1Ma (c) Jz0 − J−1Wa (c) Jz1

− ∫
c

0

(c − 𝜄)a−1J−1Qa (c − 𝜄) g𝛼 (𝜄) d𝜄
]‖
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≤ ‖J−1‖‖ℬ∗‖‖Q∗
a (c − 𝜚) ‖‖R

(
𝜇,Γc

0

) ‖‖[zc − J−1Ma (c) Jz0 − J−1Wa (c) Jz1

− ∫
c

0

(c − 𝜄)a−1J−1Qa (c − 𝜄) g𝛼 (𝜄) d𝜄
]‖

≤ PBJ̃1

(
P

Γ (2a)

)
1

𝜇

[‖zc‖ + ‖J−1Ma (c) Jz0‖ + ‖J−1Wa (c) Jz1‖
+ ∫

c

0

(c − 𝜄)a−1‖J−1Qa (c − 𝜄) g𝛼 (𝜄) ‖d𝜄
]

≤ 1

𝜇

PJ̃1PB
Γ (2a)

[‖zc‖ + J̃1PJ̃2‖z0‖ + J̃1PcJ̃2‖z1‖ + PJ̃1

Γ (2a) ∫
c

0

(c − 𝜄)2a−1Lg,𝛼 (𝜄) d𝜄
]

For such 𝜇 > 0, we prove that

𝛼 < ‖ (z𝛼) (𝜚) ‖ ≤ ‖J−1Ma (𝜚) Jz0‖ + ‖J−1Wa (𝜚) Jz1‖ + ∫
𝜚

0

(𝜚 − 𝜄)a−1‖J−1Qa (𝜚 − 𝜄) g𝛼 (𝜄) ‖d𝜄

+ ∫
𝜚

0

(𝜚 − 𝜄)a−1‖J−1Qa (𝜚 − 𝜄)ℬ x𝛼 (𝜄) ‖d𝜄

≤ J̃1PJ̃2‖z0‖ + J̃1P𝜌J̃2‖z1‖ + PJ̃1

Γ (2a) ∫
𝜚

0

(𝜚 − 𝜄)2a−1Lg,𝛼 (𝜄) d𝜄

+ PJ̃1PB
Γ (2a) ∫

𝜚

0

(𝜚 − 𝜄)2a−1 1

𝜇

J̃1PPB
Γ (2a)

[‖zc‖ + J̃1PJ̃2‖z0‖ + J̃1PcJ̃2‖z1‖
+ PJ̃1

Γ (2a) ∫
c

0

(c − 𝜄)2a−1Lg,𝛼 (𝜄) d𝜄
]
d𝜄

≤ J̃1PJ̃2‖z0‖ + J̃1P𝜚J̃2‖z1‖ + PJ̃1

Γ (2a) ∫
𝜚

0

(𝜚 − 𝜄)2a−1Lg,𝛼 (𝜄) d𝜄

+ 1

𝜇

(
PJ̃1PB
Γ (2a)

)2
c2a

2a

[‖zc‖ + J̃1PJ̃2‖z0‖ + J̃1PcJ̃2‖z1‖ + PJ̃1

Γ (2a) ∫
c

0

(c − 𝜄)2a−1Lg,𝛼 (𝜄) d𝜄
]
.

(3.4)

Dividing the Equation (3.4) by 𝛼, applying limit as 𝛼→∞ to the above inequality and utilizing H4,

we obtain

PJ̃1

Γ (2a)

[
1 + 1

𝜇

(
PJ̃1PB
Γ (2a)

)2
c2a

2a

]
𝜆 ≥ 1,

which contradicts our assumption. Hence 𝜇 > 0, there exists 𝛼 > 0 such that  maps 𝛼 → 𝛼 .

Step 3:  mapping bounded sets into equicontinuous sets of .

For all m∈(z) and z ∈ 𝛼 , there exists g∈ SE,z, we define

m (𝜚) = J−1Ma (𝜚) Jz0 + J−1Wa (𝜚) Jz1 + ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄) g (𝜄) d𝜄

+ ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬ x (𝜄) d𝜄.

Let 0< ϵ<𝜚<𝜚+ h≤ c.

Then,

‖m (𝜚 + h) − m (𝜚) ‖ ≤ ‖J−1 [Ma (𝜚 + h) − Ma (𝜚)] Jz0‖ + ‖J−1 [Wa (𝜚 + h) − Wa (𝜚)] Jz1‖
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+ ∫
𝜚+h

𝜚

(𝜚 + h − 𝜄)a−1‖J−1Qa (𝜚 + h − 𝜄) g (𝜄) ‖d𝜄

+ ∫
𝜚

𝜚−ϵ
(𝜚 + h − 𝜄)a−1‖ [J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄)

]
g (𝜄) ‖d𝜄

+ ∫
𝜚

𝜚−ϵ

[
(𝜚 + h − 𝜄)a−1 − (𝜚 − 𝜄)a−1

] ‖J−1Qa (𝜚 − 𝜄) g (𝜄) ‖d𝜄

+ ∫
𝜚−ϵ

0

(𝜚 + h − 𝜄)a−1‖ [J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄)
]

g (𝜄) ‖d𝜄

+ ∫
𝜚−ϵ

0

[
(𝜚 + h − 𝜄)a−1 − (𝜚 − 𝜄)a−1

] ‖J−1Qa (𝜚 − 𝜄) g (𝜄) ‖d𝜄

+ ∫
𝜚+h

𝜚

(𝜚 + h − 𝜄)a−1‖J−1Qa (𝜚 + h − 𝜄)ℬ x (𝜄) ‖d𝜄

+ ∫
𝜚

𝜚−ϵ
(𝜚 + h − 𝜄)a−1‖ [J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄)

]
ℬ x (𝜄) ‖d𝜄

+ ∫
𝜚

𝜚−ϵ

[
(𝜚 + h − 𝜄)a−1 − (𝜚 − 𝜄)a−1

] ‖J−1Qa (𝜚 − 𝜄)ℬ x (𝜄) ‖d𝜄

+ ∫
𝜚−ϵ

0

(𝜚 + h − 𝜄)a−1‖ [J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄)
]
ℬ x (𝜄) ‖d𝜄

+ ∫
𝜚−ϵ

0

[
(𝜚 + h − 𝜄)a−1 − (𝜚 − 𝜄)a−1

] ‖J−1Qa (𝜚 − 𝜄)ℬ x (𝜄) ‖d𝜄

=
12∑
i=1

i.

Let b = 2a−1

1−v
∈ (−1, 0). By applying H1, H3 and Lemma 2.10 for 3,4,5,6 and 7, we have

3 ≤ PJ̃1

Γ (2a) ∫
𝜚+h

𝜚

(𝜚 + h − 𝜄)2a−1‖g (𝜄) ‖d𝜄

≤ PJ̃1

Γ (2a) ∫
𝜚+h

𝜚

(𝜚 + h − 𝜄)2a−1Lg,𝛼 (𝜄) d𝜄

≤ PJ̃1

Γ (2a)

(
∫

𝜚+h

𝜚

(𝜚 + h − 𝜄)
2a−1

1−v d𝜄
)1−v‖Lg,𝛼‖L

1
v
(

V ,R
+)

≤ PJ̃1

Γ (2a)

[
h(b+1)(1−v)

(b + 1)1−v

] ‖Lg,𝛼‖L
1
v
(

V ,R
+),

4 ≤ 2PJ̃1

Γ (2a) ∫
𝜚

𝜚−ϵ
(𝜚 + h − 𝜄)2a−1‖g (𝜄) ‖d𝜄

≤ 2PJ̃1

Γ (2a) ∫
𝜚

𝜚−ϵ
(𝜚 + h − 𝜄)2a−1Lg,𝛼 (𝜄) d𝜄

≤ 2PJ̃1

Γ (2a)

(
∫

𝜚

𝜚−ϵ
(𝜚 + h − 𝜄)

2a−1

1−v d𝜄
)1−v‖Lg,𝛼‖L

1
v
(

V ,R
+)
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≤ 2PJ̃1

Γ (2a)

[
ϵ(b+1)(1−v)

(b + 1)1−v

] ‖Lg,𝛼‖L
1
v
(

V ,R
+),

5 ≤ PJ̃1

Γ (2a) ∫
𝜚

𝜚−ϵ

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

] ‖g (𝜄) ‖d𝜄

≤ PJ̃1

Γ (2a)

(
∫

𝜚

𝜚−ϵ

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

] 1

1−v d𝜄
)1−v‖Lg,𝛼‖L

1
v
(

V ,R
+)

≤ PJ̃1

Γ (2a)

[
2h(b+1)(1−v)

(b + 1)1−v

] ‖Lg,𝛼‖L
1
v
(

V ,R
+),

6 ≤ sup
𝜄∈[0,𝜚−ϵ]

‖J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄) ‖∫ 𝜚−ϵ

0

(𝜚 + h − 𝜄)2a−1‖g (𝜄) ‖d𝜄

≤ sup
𝜄∈[0,𝜚−ϵ]

‖J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄) ‖∫ 𝜚−ϵ

0

(𝜚 + h − 𝜄)2a−1Lg,𝛼 (𝜄) d𝜄

≤ sup
𝜄∈[0,𝜚−ϵ]

‖J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄) ‖(∫ 𝜚−ϵ

0

(𝜚 + h − 𝜄)
2a−1

1−v d𝜄
)1−v‖Lg,𝛼‖L

1
v
(

V ,R
+)

≤ sup
𝜄∈[0,𝜚−ϵ]

‖J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄) ‖[(𝜚 + h)b+1 − (h + ϵ)b+1
]1−v

(b + 1)1−v ‖Lg,𝛼‖L
1
v
(

V ,R
+),

7 ≤ PJ̃1

Γ (2a) ∫
𝜚−ϵ

0

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

] ‖g (𝜄) ‖d𝜄

≤ PJ̃1

Γ (2a) ∫
𝜚−ϵ

0

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

]
Lg,𝛼 (𝜄) d𝜄

≤ PJ̃1

Γ (2a)

(
∫

𝜚−ϵ

0

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

] 1

1−v d𝜄
)1−v‖Lg,𝛼‖L

1
v
(

V ,R
+)

≤ PJ̃1

Γ (2a)

[
2h(b+1)(1−v)

(b + 1)1−v

] ‖Lg,𝛼‖L
1
v
(

V ,R
+),

For 8,9,10,11 and 12, using the H1, H3 and Lemma 2.10

8 ≤ PJ̃1

Γ (2a) ∫
𝜚+h

𝜚

(𝜚 + h − 𝜄)2a−1‖ℬ x (𝜄) ‖d𝜄

≤ PJ̃1PB
Γ (2a) ∫

𝜚+h

𝜚

(𝜚 + h − 𝜄)2a−1‖x (𝜄) ‖d𝜄

≤ PJ̃1PB
Γ (2a)

(
∫

𝜚+h

𝜚

(𝜚 + h − 𝜄)
2a−1

1−v d𝜄
)1−v‖x‖

≤ PJ̃1PB
Γ (2a)

[
h(b+1)(1−v)

(b + 1)1−v

] ‖x‖,
9 ≤ 2PJ̃1

Γ (2a) ∫
𝜚

𝜚−ϵ
(𝜚 + h − 𝜄)2a−1‖ℬ x (𝜄) ‖d𝜄

≤ 2PJ̃1PB
Γ (2a) ∫

𝜚

𝜚−ϵ
(𝜚 + h − 𝜄)2a−1‖x (𝜄) ‖d𝜄
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≤ 2PJ̃1PB
Γ (2a)

(
∫

𝜚

𝜚−ϵ
(𝜚 + h − 𝜄)

2a−1

1−v d𝜄
)1−v‖x‖

≤ 2PJ̃1PB
Γ (2a)

[
ϵ(b+1)(1−v)

(b + 1)1−v

] ‖x‖,
10 ≤ PJ̃1

Γ (2a) ∫
𝜚

𝜚−ϵ

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

] ‖ℬ x (𝜄) ‖d𝜄

≤ PJ̃1PB
Γ (2a) ∫

𝜚

𝜚−ϵ

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

] ‖x (𝜄) ‖d𝜄

≤ PJ̃1PB
Γ (2a)

(
∫

𝜚

𝜚−ϵ

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

] 1

1−v d𝜄
)1−v‖x‖

≤ PJ̃1PB
Γ (2a)

[
2h(b+1)(1−v)

(b + 1)1−v

] ‖x‖,
11 ≤ sup

𝜄∈[0,𝜚−ϵ]
‖J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄) ‖∫ 𝜚−ϵ

0

(𝜚 + h − 𝜄)2a−1‖ℬ x (𝜄) ‖d𝜄

≤ PB sup
𝜄∈[0,𝜚−ϵ]

‖J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄) ‖∫ 𝜚−ϵ

0

(𝜚 + h − 𝜄)2a−1‖x (𝜄) ‖d𝜄

≤ PB sup
𝜄∈[0,𝜚−ϵ]

‖J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄) ‖(∫
𝜚−ϵ

0

(𝜚 + h − 𝜄)
2a−1

1−v d𝜄
)1−v‖x‖

≤ PB sup
𝜄∈[0,𝜚−ϵ]

‖J−1Qa (𝜚 + h − 𝜄) − J−1Qa (𝜚 − 𝜄) ‖[(𝜚 + h)b+1 − (h + ϵ)b+1
]1−v

(b + 1)1−v ‖x‖,
12 ≤ PJ̃1

Γ (2a) ∫
𝜚−ϵ

0

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

] ‖ℬ x (𝜄) ‖d𝜄

≤ PJ̃1PB
Γ (2a) ∫

𝜚−ϵ

0

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

] ‖x (𝜄) ‖d𝜄

≤ PJ̃1PB
Γ (2a)

(
∫

𝜚−ϵ

0

[
(𝜚 + h − 𝜄)2a−1 − (𝜚 − 𝜄)2a−1

] 1

1−v d𝜄
)1−v‖x‖

≤ PJ̃1PB
Γ (2a)

[
2h(b+1)(1−v)

(b + 1)1−v

] ‖x‖.
It is easy to verify 3-5,7-10,12 →0 as h→ 0. Additionally, by referring the compactness of

T (𝜚) ,1,2,6,11 tends to zero. Therefore

‖m (𝜚 + h) − m (𝜚) ‖ → 0

when h→ 0 for all z ∈ 𝛼 , which implies  (𝛼) ⊂  is equicontinuous.

Step 4: For 𝛼 > 0, fix W𝛼 = {z ∈ 𝒴 ∶ |z| ≤ 𝛼}. Clearly, W𝛼 a bounded subset in 𝒴 . To prove for

all 𝛼 > 0 and 𝜌> 0,

𝒰 (𝜚) =
{
∫

∞

0

a𝜌J−1Sa (𝜌) S (𝜚a𝜌) zd𝜌, z ∈ W𝛼

}
,

are relatively compact in 𝒴 .
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Assume that 𝜌> 0 be determined. For every 𝛿 > 0, 0<𝜀≤ 𝜚, determine a subset in 𝒴 by

𝒰𝜀,𝛿 (𝜚) =
{

S (𝜀a𝛿)
𝜀a𝛿 ∫

∞

𝛿

a𝜌J−1Sa (𝜌) S (𝜚a𝜌 − 𝜀a𝛿) zd𝜌, z ∈ W𝛼

}
.

Clearly for every 𝜚> 0, 𝒰𝜀,𝛿 (𝜚) is clearly defined. Indeed, referring uniform convergence of

Mainardi’s Wright-type function 𝜌∈ (𝛿,∞) and uniform boundedness of cosine family and, we get for

every z∈W𝛼 ,||||S (𝜀a𝛿)
𝜀a𝛿 ∫

∞

𝛿

a𝜌J−1Sa (𝜌) S (𝜚a𝜌 − 𝜀a𝛿) zd𝜌
|||| ≤ J̃1P2 ∣ z ∣ ∫

∞

𝛿

a𝜌Sa (𝜌) (𝜚a𝜌 + 𝜀a𝛿) d𝜌

≤ 2J̃1P2 ∣ z ∣ 𝜚a ∫
∞

𝛿

a𝜌2Sa (𝜌) d𝜌 ≤ 2J̃1P2

Γ (2a)
∣ z ∣ 𝜚a.

Therefore, 𝒰𝜀,𝛿 (𝜚) is relatively compact because S(𝜀a𝛿) is compact for 𝜀a𝛿 > 0.

Additionally,||||S (𝜀a𝛿)
𝜀a𝛿 ∫

∞

𝛿

a𝜌J−1Sa (𝜌) S (𝜚a𝜌 − 𝜀a𝛿) zd𝜌 − ∫
∞

0

a𝜌J−1Sa (𝜌) S (𝜚a𝜌) zd𝜌
||||

≤ ||||S (𝜀a𝛿)
𝜀a𝛿 ∫

∞

𝛿

a𝜌J−1Sa (𝜌) S (𝜚a𝜌 − 𝜀a𝛿) zd𝜌 − ∫
∞

0

a𝜌J−1Sa (𝜌) S (𝜚a𝜌) zd𝜌
||||

+
||||∫

∞

𝛿

a𝜌J−1Sa (𝜌) S (𝜚a𝜌) zd𝜌 − ∫
∞

0

a𝜌J−1Sa (𝜌) S (𝜚a𝜌) zd𝜌
||||

≤ ∫
∞

𝛿

a𝜌J̃1Sa (𝜌)
||||S (𝜀a𝛿)
𝜀a𝛿

S (𝜚a𝜌 − 𝜀a𝛿) z − S (𝜚a𝜌) z
|||| d𝜌 + ∫

𝛿

0

a𝜌J̃1Sa (𝜌) ∣ S (𝜚a𝜌) z ∣ d𝜌

≔ l1 + l2.

Since

a𝜌J̃1Sa (𝜌)
||||S (𝜀a𝛿)
𝜀a𝛿

S (𝜚a𝜌 − 𝜀a𝛿) z − S (𝜚a𝜌) z
|||| ≤ 2J̃1P2𝜚aa𝜌2Sa (𝜌) ∣ z ∣,

and

∫
∞

0

a𝜌2J̃1Sa (𝜌) d𝜌 = 2J̃1

Γ (1 + 2a)
,

we can see that

∫
∞

0

a𝜌J̃1Sa (𝜌)
||||S (𝜀a𝛿)
𝜀a𝛿

S (𝜚a𝜌 − 𝜀a𝛿) z − S (𝜚a𝜌) z
|||| d𝜌,

is uniformly convergence. Since from the strongly continuous of sine family {S(𝜚)}𝜚> 0, where

𝜌∈ (𝛿,∞), by referring Lemma 2.12, we have||||S (𝜀a𝛿)
𝜀a𝛿

S (𝜚a𝜌 − 𝜀a𝛿) z − S (𝜚a𝜌) z
||||

≤ ||||S (𝜀a𝛿)
𝜀a𝛿

S (𝜚a𝜌 − 𝜀a𝛿) z − S (𝜚a𝜌 − 𝜀a𝛿) z
|||| + |S (𝜚a𝜌 − 𝜀a𝛿) z − S (𝜚a𝜌) z| → 0,

when 𝛿→ 0. Therefore, we have

l1 ≤ ∫
∞

0

a𝜌J̃1Sa (𝜌)
||||S (𝜀a𝛿)
𝜀a𝛿

S (𝜚a𝜌 − 𝜀a𝛿) z − S (𝜚a𝜌) z
|||| d𝜌→ 0, as 𝛿 → 0.

However, by ∫ 𝛿

0
a𝜌2J̃1Sa (𝜌) d𝜌→ 0 when 𝛿→ 0, we have

l2 ≤ J̃1P ∣ z ∣ 𝜌a ∫
𝛿

0

a𝜌2Sa (𝜌) d𝜌 → 0, when 𝛿 → 0.
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Thus, there are relatively compact sets arbitrarily close to 𝒰 (𝜚), for all 𝜚> 0. Thus 𝒰 (𝜚) is

relatively compact in 𝒴 , for all 𝜚> 0.

Step 5:  has a closed graph.

Assume that zn → z* when n→∞, and mn →m* when n→∞. We shall prove that m* ∈(z*).

Since mn ∈(zn), there exists gn ∈ SE,zn such that

mn (𝜚) = J−1Ma (𝜚) Jz0 + J−1Wa (𝜚) Jz1 + ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄) gn (𝜄) d𝜄

+ ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬℬ∗ J−1Q∗
a (c − 𝜚)R

(
𝜇,Γc

0

) [
zc − J−1Ma (c) Jz0

− J−1Wa (c) Jz1 − ∫
c

0

(c − 𝜑)a−1J−1Qa (c − 𝜑) gn (𝜑) d𝜑
]
(𝜄) d𝜄.

We need to show that there exists g∗ ∈ SE,z∗ such that for all 𝜚∈V ,

m∗ (𝜚) = J−1Ma (𝜚) Jz0 + J−1Wa (𝜚) Jz1 + ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄) g∗ (𝜄) d𝜄

+ ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬℬ∗ J−1Q∗
a (c − 𝜚)R

(
𝜇,Γc

0

)
×
[

zc − J−1Ma (c) Jz0 − J−1Wa (c) Jz1 − ∫
c

0

(c − 𝜑)a−1J−1Qa (c − 𝜑) g∗ (𝜑) d𝜑
]
(𝜄) d𝜄,

clearly,||||||||
(

mn (𝜚) − J−1Ma (𝜚) Jz0 − J−1Wa (𝜚) Jz1 − ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬℬ∗J−1Q∗
a (c − 𝜚)

(×)R
(
𝜇,Γc

0

) [
zc −J−1Ma (c) Jz0 −J−1Wa (c) Jz1 −∫

c

0

(c − 𝜑)a−1J−1Qa (c − 𝜑) gn (𝜑) d𝜑
]
(𝜄) d𝜄

))
−
(

m∗ (𝜚) − J−1Ma (𝜚) Jz0 − J−1Wa (𝜚) Jz1 − ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬℬ∗J−1Q∗
a (c − 𝜚)

(×)R
(
𝜇,Γc

0

) [
zc −J−1Ma (c) Jz0 −J−1Wa (c) Jz1 −∫

c

0

(c − 𝜑)a−1J−1Qa (c − 𝜑) g∗ (𝜑) d𝜑
]
(𝜄) d𝜄

)||||||||
→0 as n→ ∞ . Assume that  ∶ L1 (V ,𝒴 ) → ,

( g) (𝜚) = ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)
[
gn (𝜄) +ℬℬ∗J−1Q∗

a (c − 𝜚)R
(
𝜇,Γc

0

)
×
(
∫

c

0

(c − 𝜑)a−1J−1Qa (c − 𝜑) g∗ (𝜑) d𝜑
)
(𝜄)
]

d𝜄

clearly, from Lemma 2.14, that  ◦SE,z is a closed graph operator. Additionally, by referring  ,we have

(
mn (𝜚) − J−1Ma (𝜚) Jz0 − J−1Wa (𝜚) Jz1 − ∫

𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬℬ∗J−1Q∗
a (c − 𝜚)R

(
𝜇,Γc

0

)
×
[

zc − J−1Ma (c) Jz0 − J−1Wa (c) Jz1 − ∫
c

0

(c − 𝜑)a−1J−1Qa (c − 𝜑) gn (𝜑) d𝜑
]
(𝜄) d𝜄

)
∈  (

SE,zn
)

Because gn → g*, and by referring Lemma 2.14, we have

(
m∗ (𝜚) − J−1Ma (𝜚) Jz0 − J−1Wa (𝜚) Jz1 − ∫

𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬℬ∗J−1Q∗
a (c − 𝜚)R

(
𝜇,Γc

0

)
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×
[

zc − J−1Ma (c) Jz0 − J−1Wa (c) Jz1 − ∫
c

0

(c − 𝜑)a−1J−1Qa (c − 𝜑) g∗ (𝜑) d𝜑
]
(𝜄) d𝜄

)
∈  (

SE,z∗
)

Hence,  is closed graph.

Hence, by referring Step 1–5, and applying Arzela-Ascoli theorem,  is a completely continuous

multivalued mapping with compact value and thus  is u.s.c. Therefore  has a fixed point z(⋅) on

𝛼 , and in view of Lemma 2.15, z(⋅) is the mild solution of (1.1)–(1.2). □

Definition 3.2 The system (1.1)–(1.2) is called approximately controllable on V if

R (c, z0) = 𝒴 , R (c, z0) =
{

zc (z0; x) ∶ x (⋅) ∈ L2 (V ,𝒰)
}

is a solution of (1.1)–(1.2). □

Theorem 3.3 Assume that H1 −H5 are satisfied. Further, there exists

ℐ ∈ L1
(
V ,

[
0,+∞

))
such that sup

z∈
‖E (𝜚, z) ‖ ≤ ℐ (𝜚)

for a.e. 𝜚∈V , then (1.1)–(1.2) is approximately controllable.

Proof . Consider ẑ𝜇 (⋅) a fixed point of  in 𝛼 . Referring 3.1, any fixed point of  is a solution of

(1.1)–(1.2) with

x̂𝜇 (𝜌) = ℬ∗J−1Q∗
a (c − 𝜚)R

(
𝜇,Γc

0

)
q
(̂
z𝜇
)

and satisfies the following inequality

ẑ𝜇 (c) = zc + 𝜇R
(
𝜇,Γc

0

)
q
(̂
z𝜇
)
. (3.5)

Further from E and Dunford-Pettis Theorem, we conclude that {g𝜇(𝜄)} is weakly compact in

L1 (V ,𝒴 ), so there exists a subsequence, {g𝜇(𝜄)}, that converges weakly to g(𝜄) in L1 (V ,𝒴 ). Determine

 = zc − J−1Ma (c) Jz0 − J−1Wa (c) Jz1 − ∫
c

0

(c − 𝜄)a−1J−1Qa (c − 𝜄) g (𝜄) d𝜄.

Now, we have

‖q
(̂
z𝜇
)
− ‖ = ‖∫ c

o
(c − 𝜄)a−1J−1Qa (c − 𝜄)

[
g
(
𝜄, ẑ𝜇 (𝜄)

)
− g (𝜄)

]
d𝜄‖

≤ sup
𝜚∈V

‖∫ 𝜚

o
(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)

[
g
(
𝜄, ẑ𝜇 (𝜄)

)
− g (𝜄)

]
d𝜄‖. (3.6)

By Ascoli-Arzela theorem, we can prove

 (⋅) → ∫
⋅

0

(⋅ − 𝜄)a−1J−1Qa (⋅ − 𝜄)ℒ (𝜄) d𝜄 ∶ L1 (V ,𝒴 ) → C (V ,𝒴 )

is compact. Hence, we have ‖q
(̂
z𝜇
)
− ‖ → 0 when 𝜇 → 0+.

Furthermore, in view of Equation (3.5), we have

‖̂z𝜇 (c) − zc‖ ≤ ‖𝜇R
(
𝜇,Γc

0

)
() ‖ + ‖𝜇R

(
𝜇,Γc

0

) ‖‖q
(̂
z𝜇
)
− ‖

≤ ‖𝜇R
(
𝜇,Γc

0

)
() ‖ + ‖q

(̂
z𝜇
)
− ‖.

It follows from H0 and (3.6) that

‖̂z𝜇 (c) − zc‖ → 0 as 𝜇 → 0+.
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Therefore the system (1.1)–(1.2) is approximately controllable on V . □

4 NONLOCAL CONDITIONS

Differential systems with nonlocal conditions have become a very lively field of recent research. Their

investigation is driven by hypothetical enthusiasm as well as by the way that these kinds of issues

normally happen when demonstrating practical applications. For instance, few events in designing,

material science, and life sciences can be portrayed by methods for the differential system subject to

nonlocal boundary conditions, and one can refer [6, 9, 11, 14, 16, 18, 25, 32, 37–41]. Consider the

nonlocal fractional Sobolev type Volterra-Fredholm integro-differential inclusions of order r ∈ (1, 2)

of the type

CDr
𝜚 (Jz (𝜚)) ∈ Az (𝜚) +ℬ x (𝜚) + E

(
𝜚, z (𝜚) ,∫

𝜚

0

e(𝜚, s, z(s))𝑑s,∫
c

0

h(𝜚, s, z(s)) 𝑑s
)
, 𝜚 ∈ V , (4.1)

z (0) + l (z) = z0, z′ (0) = z1 ∈ 𝒴 , (4.2)

where the function l ∶ C ([0, c] ,𝒴 ) → 𝒴 satisfies the following hypothesis:

H6 The function l ∶ C ([0, c] ,𝒴 ) → 𝒴 is compact and continuous, and there exists constants L1,

L2 such that ||l(z) || ≤ L1 || z||C +L2, where z ∈ C (V ,𝒴 ).
The mild solution of the nonlocal fractional evolution system (4.1)–(4.2) defined as follows:

Definition 4.1 A function z ∈  =  (V ,𝒴 ) is called a solution of (4.1)–(4.2) if

z(0)+ l(z) = z0, z′ (0) = z1, x (⋅) ∈ L2 (V ,𝒰) and there exists g ∈ L1 (V ,𝒴 ) such that

g (𝜚) ∈ E
(
𝜚, z (𝜌) , ∫ 𝜚

0
e (𝜚, s, z (s)) ds, ∫ c

0
h (𝜚, s, z (s)) ds

)
on a.e. 𝜚∈V and

z (𝜚) = J−1Ma (𝜚) J [z0 − l (z)] + J−1Wa (𝜚) Jz1 + ∫
𝜚

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄)ℬ x (𝜄) d𝜄

+ ∫
𝜌

0

(𝜚 − 𝜄)a−1J−1Qa (𝜚 − 𝜄) g (𝜄) d𝜄,

is satisfied.

Theorem 4.2 If H1–H6 are satisfied, then the system (4.1)–(4.2) is approximately
controllable on V .

5 EXAMPLE

Let us consider 𝜒 ⊂RN be an open C2 bounded domain. Assume that 𝒴 = 𝒰 = L2 (𝜒) . Let us assume

the fractional integro-differential system

𝜕r
𝜌 (u (𝜚, v) − Δu (𝜚, v)) ∈ Δu (𝜚, v) + ℏ (𝜚, v)

+ P
(
𝜚, u (𝜚, z) ,∫

𝜚

0

e (𝜚, s, u (𝜚, z)) ds,∫
c

0

h (𝜚, s, u (𝜚, z)) ds
)
, 𝜚 ∈ [0, 1] , v ∈ 𝜒, (5.1)

u (𝜚, v) = 0, 𝜚 ∈ [0, 1] , v ∈ 𝜕𝜒, (5.2)

u (0, v) = u0 (v) , u′ (0, v) = u1 (v) , v ∈ 𝜒. (5.3)
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In the above, 𝜕r
𝜚 is the partial derivative in Caputo sense of fractional order r ∈ (1, 2). Let us consider

V = [0, 1]. Assume that A be the Laplace operator with Dirichlet boundary conditions given as Au = Δ
and assume A ∶ D (A) ⊂ 𝒴 → 𝒴 , J ∶ D (J) ⊂ 𝒴 → 𝒴 be the operators defined by Au = Δ, and

Ju = u−Δ where each domain D(A) and D(J) is presented by

D (A) = D (J) =
{

g ∈ H1
0 (𝜒) , Ag ∈ L2 (𝜒)

}
.

It is clear that D (A) = H1
0 (𝜒) ∩ H2 (𝜒). Obviously A gives a uniformly bounded C0 cosine fam-

ily C(𝜚) for 𝜚≥ 0, refer [42]. Indeed, let 𝜄n = n2𝜋2 and 𝜓n (v) =
√

2

𝜋
sin (n𝜋v), for all n∈N are the

orthonormal of vectors of A.

Assume {−𝜄n, 𝜓n}∞n=1 is the eigensystem of the operator A, then 0< 𝜄1 ≤ 𝜄2 ≤ · · ·, 𝜄n →∞ as n→∞,

and {𝜓n}∞n=1 create the orthonormal basis of 𝒴 . Now

Au =
∞∑

n=1

𝜄n ⟨u, 𝜓n⟩𝜓n, u ∈ D (A) ,

Ju =
∞∑

n=1

(1 + 𝜄n) ⟨u, 𝜓n⟩𝜓n, u ∈ D (J) .

Additionally, for z ∈ 𝒴 , we have

J−1u =
∞∑

n=1

1

(1 + 𝜄n)
⟨u, 𝜓n⟩𝜓n,

AJ−1u =
∞∑

n=1

𝜄n
(1 + 𝜄n)

⟨u, 𝜓n⟩𝜓n,

where ⟨⋅, ⋅⟩ stands for inner product in 𝒴 . Accordingly, we now define the cosine family by

C (𝜚) u =
∞∑

n=1

cos
(√

𝜄n𝜚
) ⟨u, 𝜓n⟩𝜓n, u ∈ 𝒴 ,

which is connected with sine family S(𝜚) compact for (𝜚> 0) as follows

S (𝜚) y =
∞∑

n=1

1√
𝜄n

sin
(√

𝜄n𝜚
) ⟨u, 𝜓n⟩𝜓n, u ∈ 𝒴 .

It is not difficult to verify ‖C (𝜚) ‖Lc(𝒴 ) ≤ 1, for all 𝜚∈R.

Let us assume u(𝜚) = u(𝜚, ⋅), that is, u(𝜚)(v) = u(𝜚, v), 𝜚∈ [0, 1], and x(𝜚) = ℏ(𝜚, ⋅), consider ℏ : [0,

1]×𝜒→𝜒 is continuous. Determine ℬ ∶ 𝒰 → 𝒴 by ℬ x (𝜚) (v) = ℏ (𝜚, v). We now define

E
(
𝜚, u (𝜚) ,∫

𝜚

0

e (𝜚, s, u (s)) ds,∫
c

0

h (𝜚, s, u (s)) ds
)
(z)

= P
(
𝜚, u (𝜚, z) ,∫

𝜚

0

e (𝜚, s, u (𝜚, z)) ds,∫
c

0

h (𝜚, s, u (𝜚, z)) ds
)
.

Therefore, entire needs of Theorem 3.1 are satisfied, hence (5.1)–(5.3) is approximately control-

lable on V .

6 CONCLUSION

In our article, we primarily concentrated on approximate controllability results for fractional Sobolev

type Volterra-Fredholm integro-differential inclusions of order r ∈ (1, 2). By applying the results and

ideas belongs to the cosine function of operators, fractional calculus and fixed point approach, the main
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results are established. Initially, we established the approximate controllability of the considered frac-

tional system, then continued to examine the system with the concept of nonlocal conditions. Finally,

we presented an example to demonstrate the theory.
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