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Abstract. The aim of this paper is to introduce a further generalization of compactness in soft
generalized topological spaces. We define and study the concept of soft Dµ-compact spaces in soft
generalized topological spaces. Basic properties and characterizations of soft Dµ-compact spaces
are established. Soft Dµ-compactness in subspaces of soft generalized topological spaces are also
investigated.
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1. Introduction
The concept of generalized topological space (GTS) was introduced by Csaszar [2] is one of the
most important developments of general topology in recent years. The concept of γ-compactness
in Generalized Topological Spaces have been introduced by Csaszar [3]. Sunil Jacob John
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introduced the concept of Soft µ-Compact [8] in Soft Generalized Topological Spaces. The purpose
of the present paper is to show that the concept of a soft compact space can be generalized
by replacing soft µ-open sets by soft Dµ-sets. We establish some of the basic properties and
characterizations. We also examine the basic theorems about soft Dµ-compactness in subspaces,
soft µ-D2 spaces in soft generalized topological spaces.

2. Preliminaries
We recall some basic definitions and notations of most essential concepts needed in the following.
Let X be a non-empty set and denote exp(X ) the power set of X . According to [2], a collection
µ ⊆ exp(X ) of subsets of X is called a generalized topology (GT) on X and (X ,µ) is called a
generalized topological space (GTS) if µ has the following properties:

(i) ϕ ∈µ

(ii) Any union of elements of µ belongs to µ. Let µ be a GT on a set X 6=ϕ.

Note that X ∈µ must not hold; if X ∈µ then we say that the GT µ is strong [2]. Let 8Mµ denote
the union of all elements of µ; of course, Mµ ∈ µ, and Mµ = X if and only if µ is a strong GT.
The space (X ,µ) or simply X will always mean a strong generalized topological space with the
strong generalized topology µ. A subset U of X is called µ-open if U ∈ µ. A subset V of X is
called µ-closed if X −V ∈µ. A subset U of X is called µ-clopen if U is both µ-open and µ-closed.

Jyothis and Sunil [4] introduced the concept of Soft Generalized Topological Space (SGTS)
and studied Soft µ-compactness in SGTSs. The generalized topology is different from general
topology by its axioms. According to Csaszar, a collection of subsets of X is a generalized
topology on X if and only if it contains the empty set and arbitrary union of its elements.
But soft generalized topology is based on soft set theory. Jyothis and Sunil [5] discussed some
separation axioms in soft generalized topological space.

Throughout, this paper U be an initial universe and E be a set of parameters. Let P(U)
denote the power set of U and A be a non-empty subset of E.

Definition 2.1 ([6]). Let a soft set FA over the universe U is defined by the set of ordered pairs
FA = {(e, fA(e))/e ∈ E, fA(e) ∈ P(U)}, where fA is a mapping given by fA : A → P(U) such that
fA(e)=φ if e ∉ A. Here fA is called an approximate function of soft set FA . The set of all soft
sets over U is denoted by S(U).

Definition 2.2 ([6]). Let FA ∈ S(U). A Soft Generalized Topology (SGT) on FA , denoted by µ

or µFA is a collection of soft subsets of FA having the following properties: (i) F; ∈ µ and (ii)
The soft union of any number of soft sets in µ belong to µ. The pair (FA,µ) is called a Soft
Generalized Topological Space (SGTS). The Soft Generalized Topological Space (SGTS) is said
to be strong if A = E.

Throughout, this paper we consider Strong Soft Generalized Topological Spaces (SSGTS).
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Definition 2.3. A subset FB of a space (FE,µ) is called a soft Dµ-set if there are two sets
FU ,FV ∈µ such that FU 6= FE and FB = FU −FV .

Definition 2.4. A collection ℜ of subsets of soft generlized topological space (FE,µ) is said to be
a cover of FE if the union of the elements of ℜ is equal to FE .

It is called a soft Dµ-cover of FE if its elements are soft Dµ-subsets of FE .

The SGTS (FE,µ) is called soft Dµ-compact if every soft Dµ-cover of FE has finite subcover.

Definition 2.5. A space (FE,µ) is called soft µ-D2 if for any pair of distinct points α1, α2 of FE ,
there exist disjoint soft Dµ-sets FG and FH of FE containing α1 and α2, respectively.

Soft Dµ-compact Space in SSGTS

Theorem 1. If (FE,µ) is finite soft generalized topological space. Then FE is soft Dµ-compact.

Proof. Let FE = {Fa1 ,Fa2 , . . .,Fan}. Let ℜ be a soft Dµ-covering of FE . Then each element in FE

belongs to one of the members of ℜ say a1 ∈ FG1 , a1 ∈ FG2 , . . .,an ∈ FGn , where ∈ FG i ∈ ℜ and
FG i = Fui −Fvi ,Fui ,Fvi are soft µ-open. Fui 6= FE , i = 1,2,3, . . . ,n. Since each FG i is soft Dµ-set,
the collection {FG1 ,FG2 , . . . ,FGn} is a finite subcollection of soft Dµ-sets which covers FE . Hence
FE is soft Dµ-compact.

Theorem 2. Let FB be soft Dµ-compact subsets of soft µ-D2 space (FE,µ) and α ∈ FE is not in
FB, then there is a soft µ-open set FG such that FB ⊂ FG .

Proof. Suppose FB is soft Dµ-compact subsets of soft µ-D2 space (FE,µ) and α ∈ FE is not in
FB. Since (FE,µ) is soft µ-D2, for each β ∈ FB, there exists soft Dµ-sets FUα and FVβ

such that
α ∈ FUα , β ∈ FVβ

, FUα ∩FVβ
= Fϕ, where FUα = FCα

−FDα , FVβ
= FFβ

−FGβ
, FCα

, FDα , FFβ
, FGβ

are soft µ-open sets. Now, the collection {FVβ
:β ∈ FB} is a soft Dµ-covering of FB . Since FB is soft

Dµ-compact, there exist a finite subcollection, say {FVβ1
,FVβ2

, . . .,FVβn
} of soft Dµ-sets covering

FB. Thus, FB ⊂ ⋃n
i=1 FVβi

= ⋃n
i=1 FFβi

−FGβi
⊂ ⋃n

i=1 FFβi
. Since FFβ

is soft µ-open,
⋃n

i=1 FFβi
is

soft µ-open. Hence the proof.

Theorem 3. Let (FE,µ) be strong soft generalized topological spaces. Then finite union of soft
Dµ-compact sets is soft Dµ-compact.

Proof. Assume that FG ⊆ FE and FF ⊆ FE are any soft Dµ-compact subsets of FE . Let ℜ be a soft
Dµ-cover of FG ∪FF . Then ℜ will also soft Dµ-cover of both FG and FF . So, by hypothesis, there
exist a finite subcollection of ℜ of soft Dµ-sets say {FG1 ,FG2 , . . . ,FGn} and {FF1 ,FF2 , . . . ,FFm}
covering FG and FF respectively, where FG i = FA i −FBi , FA i 6= FE and FA i , FBi are soft µ-open,
i = 1,2, . . . ,n, FF j = FC j −FD j , FC j 6= FE and FC j , FD j are soft µ-open. Clearly, the collection
{FG1 ,FG2 , . . .,FGn ,FF1 ,FF2 , . . .,FFm} is a finite subcollection of ℜ of soft soft Dµ-sets covering
FG

⋃
FF . By induction, every finite union of soft Dµ-compact sets is soft Dµ-compact.
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Theorem 4. Let (FE,µ) be strong SGTS. If µ is a collection of all soft µ-clopen sets then non-
empty subsets of a soft Dµ-compact space is soft Dµ-compact.

Proof. Let the SGTS (FE,µ) be soft Dµ-compact space and FG be non-empty soft subset of FE .
By hypothesis, there exists two soft µ-open FP ,FQ ,FP 6= FE such that FG = FP −FQ .

FE − FG = FE − (FP − FQ) which implies FE − FG is soft Dµ-sets. Consider the collection
ℜ = {FAa}α∈J where FAa = FBa −FCa , FBa 6= FE , FBa , FCa are soft µ-open sets, be a soft Dµ-
cover of FG . Then the collection {{FAa}α ∈ J, {FE −FG}} is a soft Dµ-covering of FE . It is given
that FE is soft Dµ-compact, then there exist a collection ℜ of soft Dµ-sets covering FE which
can be either

(i) {FAa1
,FAa2

, . . . ,FAan
} or

(ii) {FAa1
,FAa2

, . . . ,FAan
,FE −FG}.

Consider (i) Since
⋃n

i=1 FAai
= FE and FG ⊆ FE , FG =⋃n

i=1 FAai
. Then the collection FAai i=1,2,...,n

of soft Dµ-sets is a finite subcollection of ℜ covering FG . Hence FG soft Dµ-compact.

Consider (ii) Since (
⋃n

i=1 FAai
)
⋃

(FE −FG)= FE , then FG ⊆⋃n
i=1 FAai

because if α ∈ FG implies
α ∈ FE implies α ∈ (

⋃n
i=1 FAai

)
⋃

(FE−FG). Then α ∈ (
⋃n

i=1 FAai
) or α ∈ (FE−FG). So, α ∈⋃n

i=1 FAai
,

since α ∈ FGα ∉ (FE−FG). Hence FG ⊆ (
⋃n

i=1 FAai
). Now the collection FAai i=1,2,...,n

of soft Dµ-sets
is a finite subcollection of ℜ covering FG . Hence FG is soft Dµ-compact.

Theorem 5. Let (FE,µ) be a strong SGTS. Then the following statements are equivalent.

(i) FE is soft Dµ-compact.

(ii) For every collection ℜ of complement of soft Dµ-subsets of FE , the intersection of all the
elements of ℜ is empty then the collection ℜ contains a finite subcollection with empty
intersection.

Proof. (i)=⇒(ii): Suppose FE is soft Dµ-compact space. Let C= {FA −FB : FA,FB ∈ soft µ-open,
FA ∈ FE} be the collection of all soft Dµ-subsets of FE and let ℜ= {FE − (FA −FB) : (FA −FB) ∈C}
be the collection of all complements of soft Dµ-subsets of FE . Suppose the intersection of all the
elements of ℜ is empty. (i.e.)

⋂
i[FE − (FA −FB)]= Fϕ. Then FE −⋂

i[FE − (FA −FB)]= FE −Fϕ.
i.e. [

⋂
i[FE − (FA −FB)]]c = FE . Therefore, by De-Morgans Law,

⋃
i(FA −FB) = FE . Then the

collection {(FA i −FBi )}i of soft Dµ-subsets is a covering of FE . Since (FE,µ) is soft Dµ-compact,
there is finite subcollection say {FA1−FB1 ,FA2−FB2 ,FAn−FBn} of {(FA i −FBi )}i covering FE that
is

⋃n
i=1(FA i −FBi )= FE . Then FE −⋃n

i=1 (FA i −FBi )= Fϕ which implies
⋂n

i=1[(FA i −FBi )]
c = Fϕ.

Hence
⋂n

i=1[FE − (FA i −FBi )]= Fϕ.

(ii)=⇒(i) Assume that for every collection ℜ = {FE − (FA −FB) : FA,FB are soft µ-open sets,
FA ∈ FE} of complements of soft Dµ-subsets of FE , the intersection of all the elements of
ℜ is empty implies the collection ℜ contains a finite subcollection with empty intersection.
Let ℘ = {FA i − FBi : FA i − FBi where FA i − FBi is soft Dµ-sets, FA i 6= FE for all i} be a
soft Dµ-cover of FE that is

⋃
i(FA i −FBi ) = FE = [

⋃
i(FA i −FBi )]

c = Fϕ. By De-Morgans Law,
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[
⋂

i[(FA i −FBi )]
c]c = FE . By hypothesis, [

⋂n
i=1[(FA i −FBi )]

c]c = FE . Again by De-Morgans Law,⋃n
i=1(FA i −FBi )= FE that is the collection {FA1 −FB1 ,FA2 −FB2 ,FAn −FBn} of soft Dµ subsets is

a finite subcollection of ℘ covering FE . Hence (FE,µ) is soft Dµ-compact.

Theorem 6. Let FB be a soft subset of a SGTS (FA,µ). Then the following are equivalent:

(i) FB is soft Dµ-compact with respect to µ.

(ii) FB is soft Dµ/FB compact with respect to the subspace SGT µ/FB on FB.

Proof. (i)⇒(ii) Suppose FB is soft Dµ-compact. Let ℜ= {FGa}α∈I be a soft Dµ/FB covering of FB

for each α. Then there exist FBa , FCa ∈ Dµ/FB such that FGa = FBa−FCa . Since FBa , FCa ∈ Dµ/FB ,
there exist soft µ-open sets FEa , FFa such that FBa = FEa

⋂
FB and FCa = FFa

⋂
FB. Hence

FGa = (FEa

⋂
FB)− (FFa

⋂
FB) = (FEa −FFa)

⋂
FB = FHa

⋂
FB for each α, where FHa = FEa −FFa

is soft Dµ-set. Therefore, the collection (FHa)α∈I of soft Dµ-sets is a Dµ-covering of FB. By
hypothesis, there is a finite subcollection of soft Dµ-sets {FHa1

,FHa2
, . . . ,FHan } covering FB . Then

the collection {FHa1

⋂
FBFHa2

⋂
FB, . . . ,FHan

⋂
FB}= {FGa1

,FGa2
, . . . ,FGan

} of soft Dµ/FB -sets is a
finite subcollection of ℜ covering FB. Hence FB is soft Dµ/FB compact with respect to the µFB .

(ii)⇒(i) Suppose FB is soft Dµ/FB compact with respect to the µFB . Let U= (FHa)α∈I be a soft Dµ-
covering of FB where FHa is soft Dµ-set for all α. Since FHa is soft Dµ-set, there exist soft µ-open
sets FEa , FFa such that FHa = FEa −FFa . Set FGa = FHa

⋂
FB. Then FGa = (FEa −FFa)

⋂
FB =

(FEa

⋂
FB)−(FFa

⋂
FB) implies FGa is soft Dµ/FB . But the {FGa}α∈I of soft Dβ∗gaµ/FB

is a covering
of FB with respect to µ/FB . By hypothesis there is finite subcollection {FGa1

,FGa2
, . . . ,FGan

} of
soft Dµ/FB sets covering FB . That is {FHa1

⋂
FBFHa2

⋂
FB, . . . ,FHan

⋂
FB} is a finite subcollection

of soft Dβ∗gaµ/FB
-sets covering FB . Then the collection {FHa1

,FHa2
, . . . ,FHan } of soft Dµ-sets is a

finite subcollection of U covering FB. Hence FB is soft Dµ-compact.

3. Conclusion
Hence, we introduce soft Dµ-sets and Soft Dµ-compact spaces in terms of soft Dµ-sets in Soft
Generalized Topological Spaces. Also, some properties and characterizations are investigated.
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