KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

Re-accredited to NAAC With "A+" Grade (4th Cycle) College of Excellence (UGC) Coimbatore – 641 029.

DEPARTMENT OF CHEMISTRY (PG)

COURSE OUTCOMES (PO)

M.Sc., CHEMISTRY

For the students admitted in the year 2020-21

Programme Code: 04		M.Sc., Chemistry			
Course Code: 20PCH101		C.P.1 – Organic Chemistry I			
Batch	Semester	Hours / Week	Total Hours	Credits	
2020-2022	Ι	5	75	5	

Course Objectives

- 1. To motivate the students to comprehend a knowledge on aromaticity and reaction mechanism.
- 2. To gain understanding in addition reactions, electrophilic and nucleophilic substitution reactions and disconnection approach.
- 3. To enable the students to elucidate the structure of some terpenoids compounds.

	CO1	Remember the concepts of aromaticity and the chemistry of intermediates		
	CO2	Understand the mechanism of electrophilic and nucleophilic substitution		
K1		reactions		
to	CO3	Relate the guidelines of retro synthetic approach in solving problems in the		
K4		planning of organic synthesis		
	CO4	Elucidate and analyze the synthesis of some terpenoid compounds		

Programme Code: 04	M.Sc., Chemis	try		
Course Code : 20PCH	C.P.2 – Inorga	nic Chemistry I		
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2022	Ι	6	75	5

Course Objectives

- 1. To introduce the principles and applications of solid state and nuclear chemistry.
- 2. To learn about inorganic crystals and structural determination methods
- **3.** To acquire the knowledge of periodic properties and f-block elements, nuclear model, modes of decay and detection, measurement of radio activity, nuclear reactors and applications.

	CO1	Remember the basics of periodic properties and acid-base concepts
K1	CO2	Understand the structures of some ionic solids and various defects; Investigate
to		several diffraction techniques
K4	CO3	Explore Nuclear Chemistry and study the applications of radioisotopes
	CO4	Analyze the properties and uses of <i>f</i> -block elements

Programme Code: 04	M.Sc., Chemis	try		
Course Code : 20PCH	103	C.P.3 – Physic	al Chemistry I	
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2022	Ι	5	75	5

Course Objectives

- 1. To make the students to comprehend knowledge on symmetry elements, symmetry operations and rate of the reactions
- 2. To illustrate symmetry concepts and to demonstrate the scope of the symmetry and group theory to inorganic chemistry
- 3. To know the principles of chemical kinetics to allow exploration of gas-phase and liquid-phase reactions.

	CO1	Keep in mind the fundamentals of group theory
K1	CO2	Realize the relationship between symmetry and point groups and know the applications
to		of group theory
K4	CO3	Explore different theories of reaction rates and the kinetics of fast reactions; Investigate
		various catalysis mechanisms and adsorption isotherms
	CO4	Appraise the kinetics of polymerization reaction

Programme Code: 04		M.Sc., Chemistry		
Course Code: 20PCH204		C.P.4 – Organic Chemistry II		
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2022	Π	5	75	5

Course Objectives

- 1. To gain knowledge about mechanism of elimination and addition reactions.
- 2. To enable a comprehensive knowledge on conformational analysis and stereochemistry, concerted reactions and pericyclic reactions of organic compounds to the students.
- 3. To give a thorough introduction to the study of organic photochemistry and isolation, general structural elucidation of alkaloids.

	CO1	Recollect the essentials of addition and elimination reactions
K1	CO2	Comprehend different types of notations in stereochemistry
to	CO3	Relate correlation and FMO approach for electrocyclic, cycloaddition and
K4		Sigmatropic reactions and explore Organic Photochemistry
	CO4	Elucidate the structural features of some important alkaloids

Programme Code: 04	M.Sc., Chemis	try		
Course Code : 20PCH	C.P.5 – Inorga	nic Chemistry I	Ι	
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2022	II	5	75	5

Course Objectives

- 1. To promote an awareness about bonding in coordination complexes to the students.
- 2. To gain knowledge in term symbols and electronic spectra of complexes.
- 3. On successful completion of the syllabus, the students should have known about theories of bonding in inorganic complexes and application, substitution reaction mechanism of coordination complexes, electron transfer mechanism of coordination complexes and magnetic behavior.

	CO1	Bear in mind the elemental ideas of coordination chemistry
K1	CO2	Realize the postulates of Crystal Field Theory and Molecular Orbital Theory
to	CO3	Evaluate Term symbols, study and analyse Orgel and Tanabe-Sugano diagrams
K4		of coordination complexes
	CO4	Formulate the mechanism of reactions of transition metal complexes

20PCH2CL

Programme Code: 04		M.Sc., Chemistr	ſy	
Course Code : 20PCH2CL		C.Pr.1 – Organic Chemistry Practical I		
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2022	I & II	5	120	3

Course Objectives

- 1. To make the students aware about separation of mixture of organic compounds and analyzing the unknown compounds.
- 2. To allow the students to know and practice the techniques of preparation of some organic compounds.

K3	CO1	Pertain the principle of separation for separating two organic compounds in a
		given mixture
K4	CO2	Analyze the components present in the organic mixture and report the same
K5	CO3	Evaluate the crude and recrystallised form of the given organic compound

20PCH2CM

Programme Code: 04		M.Sc., Chemistry		
Course Code : 20PCH2CM		C.Pr.2 – Inorganic Chemistry Practical I		
Batch	Semester	Hours / Cycle	Total Hours	Credits
2020-2022	I and II	5	120	3

Course Objectives

1. To give an idea to the students about the separation and analysis of cations from the given mixture.

2. To allow the students to know and practice the techniques in preparation of some inorganic complexes.

3. To know about the colorimetric principle in estimation of metal ions.

K3	CO1	Exert the methods of preparation of some inorganic complexes
K4	CO2	Analyze and report two familiar metal cations and two less familiar metal
		cations
K5	CO3	Assess the amount of metal ions present in the whole of the given solution
		by colorimetric method

20PCH2CN

Programme Code:	04	M.Sc., Chemistr	у	
Course Code : 20PC	CH2CN	C.Pr.3 – Physical Chemistry Practical I		
Batch	Semester	Hours / Cycle	Total Hours	Credits
2020 - 2022	I & II	5	120	2

Course Objectives

1. To promote an awareness about potentiometric titrations to the students.

2. To arm the future chemist with the knowledge of electrical conductance measurement and conductometric titrations.

3. On successful completion of the syllabus, the students should have known to interpret, evaluate and report upon observations and experimental results of determination of molecular weight, partition coefficient, unknown composition in Simple Eutectic System and acid-base, precipitation and redox titrations.

K3	CO1	Relate the principle of potentiometric titrations for estimating the
		strength of solutions
K4	CO2	Determine the molecular weight of a compound by Rast's method
K5	CO3	Appraise the properties of matter by Simple Eutectic System

Programme Code: 04	M.Sc., Chemis	try		
Course Code : 20PCH	306	C.P.6 – Physical Chemistry II		
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2022	III	6	75	5

Course Objectives

1. To enable a comprehensive knowledge on quantum mechanics and students will be able to remember concepts of electrochemistry and surface chemistry

2. To understand electrochemical systems of electric energy production

3. To know the electrochemical processes of surface treatment and production of materials

	CO1	Recall the elementary aspects of quantum chemistry, learn the postulates of
		quantum mechanics and compare classical and quantum mechanical principles
K1	CO2	Solve Schrodinger wave equation for harmonic oscillators
to	CO3	Employ various approximation methods to Helium atom
K4	CO4	Probe different electrochemical theories and examine the methods of
		coulometry, voltametry and polarography

Programme Code: 04		M.Sc., Chem	istry	
Course Code: 20PCH307		C.P.7 – Organic Chemistry III		
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2022	III	5	75	5

Course Objectives

1. To foster an awareness in the student the ideas of molecular rearrangement and oxidation and reduction reactions of organic compounds.

2. To introduce steroids and to enable the students to elucidate their structures.

3. To gain knowledge about the classification, characterization of proteins, vitamins and some heterocyclic compounds.

	CO1	Retain information on molecular rearrangements and study the mechanisms of				
		various molecular rearrangements				
K1	CO2	Understand the synthetic utility of different reagents in oxidation and				
to		reduction reactions				
K4	CO3	Elucidate the structure of selected steroids, proteins and vitamins				
	CO4	Appraise the chemistry of some plant pigments and reagents for organic				
		synthesis				

Programme Code: 04	M.Sc., Chemis	try		
Course Code : 20PCH	C.P.8 – Inorganic Chemistry III			
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2022	III	6	75	5

Course Objectives

- 1. To create an awareness in the student the fundamental concepts of inorganic photochemistry and bioinorganic chemistry.
- 2. To allow the students to get introduced to the study of organometallic complexes and their applications as catalysts for chemical reactions.
- 3. On successful completion of the syllabus, the students should have acquired knowledge in the nature, preparation and properties of metal carbonyl complexes, photochemistry of metal complexes and various applications and the role metals in biological systems.

	CO1	Reminisce the essentials of organometallic chemistry and the chemistry of
		metal carbonyls
K1	CO2	Understand the structure, reactions and bonding in several organometallic
to		compounds
K4	CO3	Explore the chemistry of bioinorganic compounds
	CO4	Inquest the chemistry of inorganic polymers

20PCH3CO

Programme Code: 04		M.Sc., Chem	istry	
Course Code: 20PCH3CO		C. Pr.4 – Physical Chemistry Practical II		
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2022	III	4	60	2

Course Objectives

1. To arm the future chemist with the knowledge of electrical conductance measurements and conductometric titrations.

2. To gain knowledge in making and recording observations in conductometric titrations and chemical kinetics.

К3	CO1	Apply Freundlich adsorption isotherm for the adsorption of oxalic acid
		on charcoal
K4	CO2	Examine the reaction kinetics of two different solutions
K5	CO3	Evaluate the electrical properties of solution and estimate the
		strength of the given solution

Programme Code: 04	M.Sc., Chemis	try		
Course Code: 20PCH409		C.P.9 – Physical Chemistry III		
Batch Semester		Hours/Week	Total Hours	Credits
2020-2022 IV		5	75	5

Course Objectives

1. To enable a complete knowledge on chemical and statistical thermodynamics

2. To make the students understand the third law of thermodynamics, probability theorems,

distribution laws, partition functions

3. To foster an awareness in the student the fundamental concepts of photochemistry

	CO1	Bring to mind the vitals of chemical thermodynamics
K1	CO2	Appreciate third law of thermodynamics and the theories of probability and
to		thermodynamic probability
K4	CO3	Explore statistical thermodynamics and derive distribution laws and partition
		functions
	CO4	Review the various photophysical processes taking place in excited molecules

Programme Code: 04		M.Sc., Chemis	try	
Course Code : 20PCH410		C.P.10 – Spect	roscopy	
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2022 IV		5	75	5

Course Objectives

- 1. To understand the principles and instrumentation of various spectroscopic techniques.
- 2. To gain knowledge of the applications of IR, UV and NMR spectra.
- 3. To identify the structure of compounds using various spectral techniques.

	CO1	Remember the fundamentals of IR spectroscopy
K1	CO2	Know the theories and rules for solving UV spectra of a compound
to	CO3	Investigate the fragmentation pattern in a mass spectrum and determine the
K4		structural features of some compounds
	CO4	Scrutinize the ¹ H and ¹³ C NMR spectra of simple organic molecules

20PCH4CP

Programme Code: 04		M.Sc., Chemistry		
Course Code : 20PCH4CP		C.Pr.5 - Organic Chemistry Practical- II		
Batch	Semester	Hours/Cycle	Total Hours	Credits
2020-2022	III and IV	5	120	3

Course Objectives

- 1. To attain knowledge in estimating organic compounds quantitatively.
- 2. To learn and practice the methods of preparation of some organic compounds.

Course Outcomes (CO)

K3	CO1	Exert the principle involved in double stage preparation of some organic
		compounds and prepare the compounds
K4	CO2	Analyze Reichert-Meisel value, saponification value and iodine value in the
		given oil or fat
K5	CO3	Evaluate quantitatively the amount of organic compounds present in the
		whole of the given solution

20PCH4CQ

Programme Code: 04		M.Sc., Chemistr	y	
Course Code : 20PCH4CQ		C.Pr.6 – Inorganic Chemistry Practical II		
Batch Semester		Hours/Week	Total Hours	Credits
2020-2022	III & IV	5	120	2

Course Objectives

- 1. To make the students aware about separation of mixture of inorganic compounds and quantifying them using volumetric and gravimetric principles
- 2. To know and apply the principle of complexometric titration using EDTA method
- 3. To learn about the preparation and properties of inorganic complexes

K3	CO1	Apply the principle of complexometric titrations in estimating metals
K4	CO2	Study the physical properties such as melting point, etc., of the prepared
		inorganic complexes
K5	CO3	Estimate the amount of cations present in a solution mixture

20PCH4Z1

Programme Code: 04		M.Sc., Chemistry
Course Code : 20PCH4Z1		Project work &viva-voce
Batch	Semester	Credits
2020-2022	III & IV	6

Course Objectives

- 1. To make the students acquire the basic tools needed to carry out independent chemical research.
- 2. On successful completion of the course, the students will be able to be proficient in their specialized area of chemistry and successfully complete the project.

Course Outcomes (CO)

K3	CO1	Use foundational knowledge to carry out research in the specified area
K4	CO2	Examine the results of the research using some basic tools
K5	CO3	Evaluate the research findings and present them in written and oral

Programme Code: 04		M.Sc., Chemistry
Batch : 2020-2022		ME – Analytical Chemistry
Hours/Cycle	Total Hours	Credits
5 75		5

Course Objectives

- 1. To introduce the ideas of error analysis to the students.
- 2. To enable the students to attain knowledge on various chromatographic techniques and thermoanalytical methods.
- 3. To gain knowledge in ESR and Mossbauer spectroscopy, AAS and polarimetry.

	CO1	Keep in mind the ideas of error analysis
	CO2	Comprehend the principles and instrumentation of several chromatographic
	002	comprehend the principles and instrumentation of several enromatographic
K1		methods
to	CO3	Discover the principles, instrumentation and applications of various thermo
K4		analytical techniques
	CO4	Interpret ESR, Mossbauer and AAS spectra of several metal complexes; Probe
		the principle and applications of ORD and CD

Programme Code: 04		M.Sc., Chemistry
Batch: 2020-2022		ME – Green and Nano Chemistry
Hours/Cycle	Total Hours	Credits
5	75	5

- 1. To introduce the concepts of green chemistry.
- 2. To stimulate the students to know about green synthesis.
- 3. To acquire a clear idea about various synthesis of nanomaterials and techniques.
- 4. To gain knowledge on principles of green chemistry, microwave assisted reactions and ultrasound assisted reactions.

	CO1	Remember the twelve basic principles of green chemistry and other green
K1		concepts
to	CO2	Appreciate the concept of green solvents; Explore the synthesis involving the
K4		principles of green chemistry and different green reactions
	CO3	Appraise the chemistry of nanomaterials
	CO4	Examine the applications and environmental hazards of nanomaterials

Programme Code: 04		M.Sc., Chemistry
Batch: 2020-2022		ME – Bioinorganic Chemistry
Hours/Cycle	Total Hours	Credits
5	75	5

- 1. To introduce the role of metal ions in biological systems.
- 2. To enable the students to know the structure, function and physiology of Haemoglobin and myoglobin.
- 3. To recognize electron transfer, respiration, photosynthesis, function of metalloenzymes and the applications of metals in medicine.

	CO1	Revive the role of metal ions in biological systems
	CO2	Understand the physiology and functions of haemoglobin and myoglobin
K1	CO3	Analyze the electron transfer reactions in biological systems; Integrate the
to		structure and functions of metalloenzymes
K4	CO4	Study the functions and applications of metals in medicine; Examine the
		toxicity of metals in biological systems

Programme Code: 04		M.Sc., Chemistry
Batch: 2020-2022		ME – Chemistry in other dimensions
Hours/Cycle	Total Hours	Credits
5	75	5

- 1. To understand about non-aqueous solvents.
- 2. To stimulate the students to know about supramolecular chemistry.
- 3. To acquire a clear idea about Raman and Photoelectron spectroscopic techniques.
- 4. To gain knowledge on principle and applications of Nuclear Quadrupole Resonance.

	CO1	Refresh the rudiments of non-aqueous solvents		
	CO2	Realize the concept of Supramolecular chemistry		
K1	CO3	Apply photoelectron, rotational and Raman spectroscopic techniques for		
to		solving the structures of inorganic compounds		
K4	CO4	Relate the technique of NQR for structure solving		

Programme Code: 04		M.Sc., Chemistry
Batch : 2020 - 2022		NME – Chemistry of Environment
Hours / Week	Total Hours	Credits
4	75	4

- 1. To create awareness among the students about various environmental issues like pollution of air, water and soil which threaten the mankind.
- 2. To motivate the students to know the measures to prevent and control pollution.
- 3. On successful completion of the syllabus, the students should have learnt about various pollution, their sources, effects and control measures.

	CO1	Bear in mind the composition of air, Know the different sources of air
		pollutants and their effects
K1	CO2	Understand the different sources of water pollution, their effects and control
to		measures
K4	CO3	Recognize the types and consequences of soil and radioactive pollutants
	CO4	Scrutinize the causes and harmful effects of thermal and noise pollution

Programme Code: 04	M.Sc., Chemistry	
Batch : 2020 – 2022	NME – Scientific Thesis Writin	ng
Hours / Week	Total Hours	Credits
4	75	4

- 1. To introduce students the research prospectus and thesis/dissertation writing process with the focus on both the rhetorical framework and grammatical patterns germane to these tasks and the purpose of the research project.
- 2. To focus on the communication problems encountered in research and writing a thesis.
- 3. On successful completion of the syllabus, the students should have trained themselves how to write a thesis.

	CO1	Know how to write the 'Introduction' and 'Review of Literature' chapter		
		of a thesis or dissertation		
K1	CO2	Understand the guidelines for writing 'Materials and Methods' chapters of		
to		a thesis; Learn about the preparation of tables		
K4	CO3	Apply the strategies specified for writing 'Discussion', 'Abstract',		
		'Results' and 'References' sections of a thesis		
	CO4	Adopt the format for preparing manuscript for oral/poster presentation and		
		journal publications		

Programme Code: 04		M.Sc., Chemistry	
Batch : 2020-2022		NME – Textile and Dye Chemistry	
Hours/Cycle	Total Hours	Credits	
4	75	4	

- 1. To understand the classification, structure, properties of various textile fibres.
- **2.** To enable the students to attain knowledge to understand the interaction between dye and textile fibres.

To learn about types of fibres and dyeing processes and after treatment techniques.

Course Outcomes (CO)

	CO1	Keep in mind the chemistry of fibres
K1	CO2	Comprehend the manufacture and processing of fibres
to	CO3	Study the different theories of colour and examine the principle of dyeing
K4	CO4	Probe the different treatment process of dyeing

Programme Code: 04		M.Sc., Chemistry
Batch : 2020 – 2022		NME – Industrial Chemistry
Hours / Week	Total Hours	Credits
4	75	4

Course Objectives

- 1. To introduce students to the chemistry of Industrial products.
- 2. To focus on the preparation and applications of glass, cement, fertilizer, paints and pigments.
- 3. On successful completion of the syllabus, the student will be able to gain knowledge about the manufacture of glass, cement and paint.

	CO1	Recall the properties, manufacture and properties of glass		
K1	CO2	Understand the types and manufacturing process of cement		
to	CO3	Recognize the importance and need of fertilizers		
K4	CO4	Assess the chemistry of paints and pigments, rubber and allied		
		products		