KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

Re-accredited by NAAC with 'A+' Grade (4th Cycle) College of Excellence (UGC) Coimbatore - 641 029

DEPARTMENT OF PHYSICS (Aided)

COURSE OUTCOMES (CO)

M.Sc. PHYSICS

For the students admitted inthe Academic Year 2020-2021

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Paper 1 – Classical Mechanics		chanics
Batch 2020-2021	Semester I	Hours/Week 5	Total Hours 75	Credits 5

Course Objectives

To enable the learners to know about the

- 1. Mechanics of single and system of particle,
- 2. Generalized coordinates, Lagrangian formulation and mechanics of rigid body motion,
- 3. Hamiltonian formulation of mechanics, Hamilton-Jacobi theory, harmonic oscillator problem, theory and applications of small oscillations.

Course outcomes (CO)

	C01	Know about Newtonian mechanics which provides models of the mechanical behavior of objects; conservation principles involving momentum, angular momentum, energy which the fundamental equations of motion.
K1 to K4	CO2	Get knowledge about coordinate transformations, oscillatory motion, gravitation and other central forces, Lagrangian mechanics and applications of Lagrangian mechanics to solve the physical problems.
CO3 Get knowledge about Mechanics of Rigid Body motion.		Get knowledge about Mechanics of Rigid Body motion.
	CO4	Know about the theory of small oscillations and its applications

Sub Code: 20PPH102				
Programm	Programme code : 03 M.Sc. Physics			
Title of the Paper		Core Paper 2 - Mathematical Physics		l Physics
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2021	Ι	5	75	5

Course Objectives

To enable the learners to

1. Understand complex variables, group theory & tensors

- 2. Know about different differential equations and partial differential equations in Physics
- 3. Study about some of the numerical methods

	CO1	Have a good understanding of complex analysis including important theorems and determination of residues to evaluate certain types of definite integrals
K1 to K4	CO2	Solve physically relevant partial differential equations using the method of separation of variables and be familiar with the most important special functions such as Bessel, Legendre and Hermite to solve differential equations
		Have knowledge in abstract group theory and tensors
		Apply numerical methods to obtain appropriate solutions to mathematical problems

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Paper 3 – Condensed Matter Physics - I		
Batch 2020-2021	Semester I	Hours/Week 5	Total Hours 75	Credits 5
Course Objectives				

To enable the learners to

- 1. Understand the crystal system of materials
- 2. Know about the role of free electron on thermal and electrical conductivity
- 3. Study about lattice vibrations in crystals

Course outcomes (CO)

	CO1	Understand the fundamental principles and concepts of crystal physics
K1 to K4	CO2	Applying the reciprocal lattice to the crystal structure and explain how it gives rise to band structure
	CO3	Expand and evaluate the energy band structure of metal
	CO4	Acquire knowledge on solid materials

Sub Code: 20PPH204

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Paper 4 – Quantum Mechanics I		echanics I
Batch 2020-2021	2		Total Hours 75	Credits 4

Course Objectives

1. To impart knowledge on topics of advanced quantum mechanics

- 2. To understand and to develop problem solving ability on formalism of quantum mechanics, energy Eigen value problems and approximation methods.
- 3. To understand time dependent and independent theories and perturbation theories.

	CO1	After successfully completing the course, students will be able to spot, identify and relate the eigenvalue problems for energy, momentum and angular momentum.		
K1 to K4	CO2	Solutions of the Schrodinger equation for one and three- dimensional potentials, the square well, the harmonic oscillator and algebraic solution of the harmonic oscillator, barrier penetration and the Ramsauer-Townsend effect will be effectively learned.		
	CO3	This course will introduce Dirac's bra-ket formulation of quantum mechanics and make students familiar with various approximation methods.		
	CO4	The students will be able to understand the time-independent and time-dependent perturbation theory, Schrodinger, Heisenberg and Interaction pictures.		

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Paper 5 - Thermodynamics and Statistical Mechanics		tatistical
Batch 2020-2021	Semester II	Hours/Week 5	Total Hours 75	Credits 4

Objectives: To enable the learner to know about

- (i) Basic laws in Thermodynamics,
- (ii) Classical law and distributions,
- (iii) Basic concepts in quantum statistics.

Course outcomes (CO)

	CO1	Know about statistical nature of concepts and laws in thermodynamics, in particular: entropy, temperature, chemical potential and apply the concepts and principles of black body radiation to analyze radiation phenomena in thermodynamic systems.
K1 to K4	CO2	Get knowledge about using the statistical Physics methods, such as Boltzmann distribution, Gibbs distribution, Fermi-Dirac and Bose- Einstein distributions to solve problems in some physical systems.
	Get knowledge about basic concepts and relations including phase space, ensemble, statistical equilibrium, thermal equilibrium and mechanical equilibrium.	
	Get knowledge about the statistical mechanics of quantum fluids (bosons or fermions), classical limit and strongly degenerate quantum systems, including Fermi gases and Bose-Einstein condensate	

Sub Code: 20PPH206

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 6 - Problems in Physics		Physics
Batch 2020-2021	Semester II	Hours/Week 5	Total Hours 75	Credits 4

Objectives

- 1. To impart knowledge and skills to solve problem through the concept behind physics
- 2. To apply multitude of creative thinking techniques towards realistic problem
- 3. To visualize the basic concepts clearly

Course of	outcomes	(CO)
-----------	----------	------

	CO1	Understand the problems in classical mechanics, quantum mechanics, electronics and thermodynamics
	CO2	Segregate the Physics involved in each section of the problem
K1 to K4	CO3	Recollect the related formulae and apply them in the respective areas necessary
	CO4	Solve problems in classical mechanics, quantum mechanics, electronics and thermodynamics

Sub Cada 20000000

Programme code : 03			M.Sc. Physics	
Title of the Paper		Core Practical I – General Experiments		
BatchSemester2020-2021I & II		Hours/Week 5	Total Hours 150	Credits 3

Course Objectives

To enable the learners to

- 1. Perform experiments in the field of general Physics and gaining physical understanding of the results.
- 2. Explain physical phenomena and enable to relate physical laws and their applications and hence have a good foundation in Physics.
- 3. Will be able to apply standard techniques and assess the experimental result and output.

Course outcomes (CO)

	CO1 Have a good foundation in the fundamentals and applications of gen Physics	
K3,K4,K5	CO2	Able to design, carry out record and analyze experimental data.
	CO3 Provide hands on experiences in conducting scientific in laboratory experiments.	
	CO4	Understand the relationship between theory and experimental results.

			Sub Code:	20PPH2CM
Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Practical II – Electronics Experiments		
Batch 2020-2021	Semester I & II	Hours/Week 5	Total Hours 150	Credits 3

Course Objectives

To enable the learners to

- 1. To design and construct small electronic circuits
- 2. To develop experimental skills and understand relation between experimental data and theoretical analysis.
- 3. Have a good foundation in the fundamentals and applications of experimental Physics

	CO1	Acquire a basic knowledge in solid state electronics including FET, UJT and OP AMP.
K3,K4,K5	CO2	Develop the ability to analyse and design analog electronic circuits using discrete components.
	CO3	Observe the amplitude frequency response of common amplification circuits.
	CO4	Take measurements to compare experimental results in the laboratory with the theoretical analysis.

Programme: 03			M.Sc. Physics	
Title of the Paper		Core Paper 7 - Quantum Mechanics – II		Π
Batch 2020-2021	Semester III	Hours/Week 5	Total Hours 75	Credits 5

Course Objectives

To enable the learners to

1. Understand the basic approximate methods in molecular Quantum Mechanics

2. Understand relativistic quantum theory, quantum optics and quantization of

fields and scattering

Course outcomes (CO)

	CO1	Understand different approximations and models to describe a many electron system
171 4 174	Comparison of MO and VB theories to explain molecular structure of hydrogen molecule and hydrogen ion	
K1 to K4	CO3	Understand the relation between relativistic theory and quantum mechanics through Dirac's and the related theories. The understandability of spin and negative energy states will be clear.
	CO4	Interpret scattering theory interms of quantum aspects.

Sub Code: 20PPH308

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 8 – Electromagnetic Theory and Electrodynamics		
Batch 2020-2021	Semester III	Hours/Week 5	Total Hours 75	Credits 5

Course Objectives

To know about

1. Theoretical study on electrostatics and magneto statics

- 2. Applications of Maxwell's equations
- 3. Antenna Arrays

	CO1	Understanding of Maxwell's equations and will be able to manipulate and apply them to EM problems
K1 to K4	CO2	Define and derive expressions for energy of electrostatics and magnetostatic fields and derive Poynting theorem
	CO3	Understanding of the propagation and losses of electromagnetic waves in different media.
	CO4	Study the interaction of electromagnetic waves with different media

			Sub Code:	20PPH309
Programme: 03		M.Sc. Physics		
Title of the Paper		Core paper 9 – Condensed Matter Physics-II		
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2021	III	4	60	5

To gain knowledge about

1. Different types of bonding

2. Polarization effect on dielectric materials

3. Density states of electron

Course Outcomes (CO)

	CO1	Knowledge on structural, semiconducting, superconducting and magnetic properties of crystalline materials
K1 to K4	CO2	Uunderstand the imperfections in crystals and also lattice vibrations
	CO3	Knowledge on ferroelectric nature materials
	CO4	Analyze the effect of temperature, impurity concentration on electrical and magnetic properties of materials.

Sub Code: 20PPH410

Programme: 03		M.Sc. Physics		
Title of the Paper		Core paper 10 - Communication Physics		
Batch 2020-2021	Semester IV	Hours/Week 5	Total Hours 75	Credits 4

Course Objectives

To enable the learners to understand

- 1. Various modulation and detection techniques
- 2. Generation and propagation of microwaves
- 3. Radar and communication electronics

	CO1	Knowledge about wireless and wired telephony communication systems
K1 to K4	CO2	Understand the working principles of Radio, Television, Radar and Satellite communication
	CO3	Knowledge on modeling of different types of antennas and microwave generation
	CO4	Able analyze the problems involved in designing of wireless communications devices

			Sub Code:	20PPH411
Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 11 - Atomic and Molecular Spectroscopy		
BatchSemester2020-2021IV		Hours/Week 5	Total Hours 75	Credits 4

To study about the

Course Objectives

- 1. Atomic Spectroscopy, Microwave Spectroscopy, IR Spectroscopy and Raman Spectroscopy
- 2. Electronic Spectra of diatomic molecules
- 3. NMR and AQR Spectroscopy.

Course outcomes (CO)

	CO1	Explain the different spectroscopic methods for qualitative and quantitative analysis
	CO2	Explain electronic transitions, atomic spectra, excited states, hydrogenic and multielectron atoms.
K1 to K4	CO3	Understanding of quantum chemical principles
	CO4	Knowledge about binding of atoms into molecules, molecular degrees of freedom (electronic, vibrational and rotational) and elementary group theory.

Sub Code: 20PPH412

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Paper 12 - Nuclear and Particle Physics		
Batch 2020-2021	Semester IV	Hours/Week 5	Total Hours 75	Credits 4

Course Objectives

To study about the

- 1. Basic nuclear structure
- 2. Radio Alpha decay, Beta decay and Gamma decay
- 3. Nuclear Models: Liquid Drop Model, Shell Model

K1 to K4	CO1	Be able to study the structure of a nucleus and about nuclear forces
	CO2	Be able to understand the various types of decays in radioactive elements
	CO3	Have a thorough knowledge of the different nuclear models and different types of nuclear reactions
	CO4	A thorough knowledge about elementary particles

			Sub Code	e: 20PPH4CN
Programme: 03		M.Sc. Physics		
Title of the Paper		Core Practical III – Advanced Experiments		
Batch 2020-2021	Semester III & IV	Hours/Week 5	Total Hours 150	Credits 3

To enable the learners to

- 1. Perform experiments in the field of advanced Physics and interpret the results.
- 2. Explain physical phenomena and enable to estimate various related parameters and to analyze them.
- 3. Apply the experimental techniques to the research level

Course outcomes (CO)

	CO1 Fundamental knowledge on applications of advanced Physics.				
K3,K4,K5	CO2	Understand the relationship between theory and experiments			
CO3 Provide hands on experiences in conducting scientific investigations laboratory experiments.		Provide hands on experiences in conducting scientific investigations and laboratory experiments.			
	CO4	Design, carry out record and analyze experimental data.			

Sub Code: 20PPH4CO

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Practical IV – Special Electronics Experiments		
Batch 2020-2021	Semester III & IV	Hours/Week 5	Total Hours 150	Credits 3

Course Objectives

To enable the learners to

- 1. To design and construct small electronic circuits
- 2. To develop experimental skills and understand relation between experimental data and theoretical analysis.
- 3. Have a good foundation in the fundamentals and applications of experimental Physics

	CO1	Acquire a basic knowledge in solid state electronics including OP AMP and 555 timer and understand the ALP using 8085 processor			
CO2 Develop the ability to analyze and design analog electronic circu discrete components.					
K3,K4,K5	CO3	Observe the physical entities by constructing a sensor circuits such as temperature and light intensity using Op-amp			
	CO4	Take measurements to compare experimental results in the laboratory with the theoretical analysis and also simulate the ALP for the interfaces such as Traffic control, Stepper motor and A/D, D/A converters			

Programme	code:03	M.So	c. Physics	
Title of the Paper		Major Elective Paper1- Electronics and Microprocessors		
Batch 2020-2021	Semester I / II	Hours/Week 5	Total Hours 75	Credits 5

To study about the

- 1. Power electronics, operational amplifiers and its applications and non-linear IC circuits
- 2. Instruction set, interfacing and programming of 8085 microprocessors.
- 3. Architecture of microprocessors.

Course Outcomes (CO)

	CO1	Will get knowledge on crystalline and amorphous nature of semiconductors
K1 to K4	CO2	Will be able to understand the method of preparation of thin films
	CO3	Will apply knowledge on Photolithography for manufacturing of LED
	CO4	Will be able analyze the problems in LED production and its performance

Programme code: 03		M.Sc. Physics		
Title of the Paper		Major Elective Paper 2- Applied Physics		Physics
Batch 2020-2021	Semester I / II	Hours/Week 5	Total Hours 75	Credits 5

Course Objectives

- i. To impart knowledge on semiconducting materials
- ii. To understand the working of solar cells and LED
- iii. To impart knowledge on different deposition technique

	CO1	Able to identify the different type semiconducting materials
	CO2	Able to describe the working of solar cells
K1 to K4	CO3	Able to design the experiment to estimate the device parameters
	CO4	Able to apply the knowledge on synthesis / deposition of different semiconductors and to demonstrate the potential applications.

Programme	code:03		M.Sc. Physics	
Title of the Paper		Major Elective Paper 3 - Energy Physics		
Batch 2020-2021	Semester I / II	Hours/Week 5	Total Hours 75	Credits 5

To enable the leaners

- 1. To know about solar radiation & solar pond
- 2. To know about photovoltaic energy conversion
- 3. To know hydrogen energy, wind energy & OTEC
- 4. To understand the importance of energy auditing and carbon credits.

Course Outcomes (CO)

	CO1	Understand the nature of solar radiations and the conversation of solar radiation into thermal energy by means of solar energy collectors	
V1 40 V 4	CO2	Understand the basics of solar energy conversion, material selection for solar cells and its applications	
K1 to K4	CO3	Know the principles of wind energy conversion, basic components of conversion system and its application	
	CO4	Know the principles of energy conservation and energy audit, global climate change, carbon credits & its implantation projects.	

Programme	code : 03	M.Sc. Physics		
Title of the Paper		Major Elective Paper 4 - Industrial Physics		
Batch	Semester	Hours/Week	Total Hours	Credits
2020-2021	I/II	5	75	5

Course Objectives

To enable the learners to

- 1. Understand the working of SCR, UJT, Jones circuit and Triac circuits.
- 2. Understand the construction and working of flip-flops, registers converter and microprocessors.
- 3. Understand the working of the production of vacuum and construction of pumps and gauges
- 4. Understand the working of heating system, photodiode, gauges etc.,

	CO1	Get knowledge on different types of transistors, regulators and microprocessors
K1 to K4 Understand the working mechanism of SCR, Flip Thermocouple and vacuum gauges		Understand the working mechanism of SCR, Flip-flops, Thermocouple and vacuum gauges
	CO3	Apply knowledge on vacuum techniques, applications of SCR, Switching circuits and Industrial heating systems
Able analyze the problems involved in bia		Able analyze the problems involved in biasing of transistors, industrial transducers and production of vacuum

Programme: 03		M.Sc. Physics		
Title of the Paper		Non-Major Elective – Nanotechnology: Principles and Applications		Principles and
Batch 2020-2021	Semester III / IV	Hours/Week 4	Total Hours 60	Credits 4

To impart knowledge on

- i) To understand the nanomaterial and nanotechnology
- ii) To know the different synthesis processes for making nanomaterials
- iii) To know the characterization techniques available for nanomaterials
- iv) To explore the nano-devices and various applications

Course Outcomes (CO)

	CO1	Understand the basic concepts of nanoscience, physical principles of quantum confinement and classification of nanostructures.
K1 to K4	CO2	Know the synthesis methods of 0-D, 1-D, 2-D and 3-D nanomaterials and its own advantages.
KI 10 K4	CO3	Know the various characterization methods to study material's morphological, structural and optical properties.
	Gain knowledge in the applications of nanotechnology in the field of data storage, biology solar cell, sensor and rechargeable batteries.	

Programme code : 03		M.Sc. Physics		
Title of the Paper		Non-Major Elective- Thin Film Physics, Plasma Physics and Crystal Growth		• /
BatchSemester2018-2019III / IV		Hours/Week 4	Total Hours 60	Credits 4

Course Objectives

To enable the learners to understand the

- 1. Preparation and characterization of thin films
- 2. Fundamentals of plasma Physics
- 3. Techniques of crystal growth

	CO1	Have knowledge on the mechanism and process for the synthesis and evolution of thin films	
CO2 Be able to understand the principles, advantages and disc of different thin film deposition methods			
K1 to K4	CO3	Be able to the fundamental plasma parameters (under what conditions an ionized gas can be treated as plasma) and to distinguish single particle approach and fluid approach	
	CO4	Be able to understand the physical and chemical processes for the growth of crystals and the different growth techniques	

Programme: ()3	M.Sc. Physics		
Title of the Paper		Non-Major Elective -Atmospheric Science		
BatchSemester2020-2021III / IV		Hours/Week 4	Total Hours 60	Credits 4

To enable the learners to

- 1. study about atmospheric thermodynamics and radiation
- 2. impart knowledge on clouds and precipitation and Air pollution.
- 3. study about meteorological systems and global energy balance

Course Outcomes (CO)

	CO1	Know the composition and structure of atmosphere.
K1 to KA	CO2 Describe atmospheric thermodynamics and radiations	
		Able to interpret clouds and precipitation
		Deliver the meteorological systems and global energy balance and to calibrate air pollution

Programme code : 03		M.Sc. Physics			
Title of the Paper		Non-Major Elective -Modern Optics			
BatchSemester2018-2019III / IV		Hours/Week 4	Total Hours 60	Credits 4	
Course Objectives					

To explore

- 1. Necessary and sufficient condition for laser
- 2. Basic principles involved in Non-linear optical effects
- 3. Different types of optical fibers and its applications

K1 to K4	CO1	Acquire basic knowledge about optics of solids, scattering, polarization		
	CO2	Understand about Magneto-optic effects, Electro-optic effects and non- linear optical effects		
	CO3	Acquire relevant information about fabrication of optical fibers by various processes about latest developed fibres. fiber optic sensors and their application in medical field		
	CO4	Have good knowledge about various fiber optic sensors and their application in medical field. They also know about fiber losses in core ,cladding material and also dispersion in fibres.		

Subject Code: 20PPH3X1Programe: 03M.Sc. PhysicsTitle of the PaperEDC - Biomedical InstrumentationBatchSemesterHours/WeekTotal Hours2020-2021III2302

Course Objective

To enable the learners to

- 1. Impart knowledge on various biomedical instruments
- 2. understand the working of biomedical instruments

Course outcome (CO)

	CO1	Learn several signals that can be measured from the human body. Specific examples include temperature, electrical, and pressure signals.
K1 to K4	CO2	Understand theory and design on Measurement of blood flow and pressure.
	CO3	Understanding the problem and ability to identify the necessity of equipment to a specific problem.
	CO4	Study the designs of several instruments used to acquire signals from living systems. Integrate information learned about biomedical signals, sensors and instrumentation design.

ADVANCED LEARNERS COURSE Advanced Experimental Techniques

Credit: 2

Course Objective

To enable the learners to

- 1. Understand different types of structural and surface morphological and spectroscopic characterization techniques
- 2. Gain knowledge about magnetic techniques
- 3. Understand thermal analytical techniques

K1 to K5 CO1 Gain knowledge on structural characterization CO2 Acquire knowledge on spectroscopic analysis CO3 Gain knowledge on morphological techniques CO4 Acquire knowledge on magnetic properties of materials CO5 Gain knowledge on thermal analytical techniques