KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

Re-accredited by NAAC with 'A' Grade – 3.64 CGPA out of 4 (3rd Cycle)

College of Excellence (UGC)

Coimbatore – 641 029

DEPARTMENT OF MATHEMATICS (Aided)

COURSE OUTCOMES (CO)

M.Sc. Mathematics

For the students admitted In the Academic Year 2018-2019

Programme Code: 02		M.Sc Mathematics		
Course Code:	18PMA101	Core Paper 1 – Algebra		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	I	7	105	5

- 1. To study groups, rings, fields and linear transformations which are widely used in many research fields and the concepts of mappings are applied in the subjects like analysis and topology.
- 2. To show the needs from which a modern mathematical attitude may grow and it is of great help in any further axiomatic study of mathematics.
- 3. To study the concept of linear transformations using matrices. Also, Contemporary mathematics and mathematical physics make extensive use of abstract algebra.

K1	CO1	Remembering the concept of rings, fields and extension fields.
K2	CO2	Understanding the difference between algebraic and transcendental extensions; be able to find the minimal polynomial for algebraic elements over a field and be able to prove whether a polynomial is irreducible over a given field.
К3	CO3	Applying Sylow's theorems to determine the structure of certain groups of small order and also Gauss lemma, Eisentein criterion for irreducibility of rationals.
K4	CO4	Analyzing Galois groups in simple cases and to apply the group theoretic information to deduce results about fields and polynomials.

Programme Code: 02		M.Sc Mathematics		
Course Code : 18PMA102 Core Pa			EAL ANALYSIS	
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	I	6	90	5

- 1. To learn about advanced topics in Riemann's Stieltjes Integrals.
- 2. To study the mean value theorem for Riemann and Riemann's Stieltjes integrals.
- 3. To study directional derivatives, total derivatives, Jacobian determinant and their applications.

		` '
K1	CO1	Remembering the upper and lower integrals and the Riemann
		conditions.
K2	CO2	Understanding the difference between necessary and sufficient
		conditions for Riemann's Stieltjes Integrals.
K3	CO3	Identifying the sufficient conditions for differentiability and mixed
		partial derivatives.
K4	CO4	Analyzing the Jacobian determinant to understand the Implicit and
		Inverse function theorems.

Programme Code : 02			M. Sc Mathematics		
Course Code:	18 PMA103	Core Paper 3-Ordinary Differential Equations			
Batch	Semester	Hours / Week	Total Hours	Credits	
2018-2020	I	7	105	5	

- 1. To understand the concepts of fundamental matrix and successive approximation for finding solution.
- 2. To enable the students to know the concepts of non-homogeneous linear systems with constant co-efficient and periodic co-efficient.
- 3. To gain knowledge in the area of linear oscillations and non-linear oscillations.

K1	CO1	Remembering the different types of differential equations.
K2	CO2	Understanding the concept of linear oscillations and non-linear
		oscillations.
K3	CO3	Applying the notions of fundamental matrix and successive
		approximations in the system of differential equations.
K4	CO4	Analyzing the non-homogeneous linear systems with constant co-
		efficient and periodic co-efficient.

Programme Code: 02	M. Sc Mathematics
---------------------------	-------------------

Course Cod	Course Code:18PMA104 Core page		er 4 - NUMERICAL METHODS	
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	I	6	90	4

- 1. To solve the linear equations, non-linear equations and interpolating the values using numerical methods.
- 2. To obtain the solution of Boundary Value Problems and Characteristic Value Problems using Numerical Methods.
- 3. To find the Solution of Ordinary Differential Equations and Partial Differential Equations using Numerical methods.

K1	CO1	Remembering various numerical methods for finding the solution of
		algebraic and transcendental equations.
K2	CO2	Demonstrating various numerical algorithms for solving simultaneous
		linear algebraic equations.
K3	CO3	Applying various numerical methods to solve differential equations.
K4	CO4	Analyzing the Boundary Value Problems and Characteristic Value
		Problems.

Programme Coo	ogramme Code: 02 M. Sc Mathemat		M. Sc Mathematics	
Course Code : 18PMA205		Core Paper 5 - COMPLEX ANALYSIS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	II	7	105	4

- 1. To study Cauchy's theorem and applying it for a rectangle and a disk.
- 2. To know various types of singularities and evaluation of definite integrals using residues.
- 3. To understand the concept of power series expansions and canonical products.

K1	CO1	Recalling rectifiable arcs and line integrals as functions of arcs.
K2	CO2	Explaining the concepts of Local mapping theorem, Cauchy residue
		theorem and its applications.
K3	CO3	Applying the Residue theorem on definite integrals.
K4	CO4	Analyzing the Riemann mapping theorem and Schwarz - Christoffel
		formula.

Programm	Programme Code: 02		M.Sc Mathematics	
Course Code:	18PMA206	Core Paper 6 - Partial Differential Equations		al Equations
Batch	Semester	Hours / Week	Total Hours	Credits

	T		1	T
2010 2020	TT	6	00	l <i>E</i>
2018-2020	11	0	90) 3
		ļ.	l.	

- 1. To study linear partial differential equations and non-linear partial differential equations.
- 2. To know the concept of partial differential equations and their role in modern mathematics.
- 3. To understand the concepts of wave equations and diffusion equations.

Course Outcomes (CO)

K1	CO1	Finding the solutions of the heat equation, wave equation and the	
		Laplace equation subject to boundary conditions	
K2	CO2	Understanding the method of separation of variables and the method	
		of integral transforms.	
K3	CO3	Applying calculus of variations in finding elementary solutions of	
		diffusion equations.	
K4	CO4	Analyzing the solutions of non-linear partial differential equations by	
		using Charpit's and Jacobi's methods.	

Programme Code: 02		M. Sc Mathematics		
Course Code: 18PMA207		Core Paper 7- MECHANICS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	II	6	90	5

Course Objectives

- 1. To know the basic concepts of the Mechanical system.
- 2. To understand about the constraints, differential forms and Generating functions
- 3. To acquire knowledge about mechanical concepts to solve various problems in Mechanics.

K1	CO1	Remembering the concepts of generalized co-ordinates and constraints.
K2	CO2	Explaining the derivation of Lagrange's and Hamilton equations.
K3	CO3	Applying Hamilton Principle for deriving Hamilton Jacobi Equation.
K4	CO4	Analyzing the Lagrange's and Poisson Brackets.

Programme Code: 02		M. Sc Mathematics		
Course Code:	18PMA208	Core Paper 8-Programming in C – Theory		C – Theory
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	II	5	75	3

- 1. To understand the logical structure of a C program and to develop different programs in 'C' language.
- **2.** To know the concepts of Arrays and Pointers.
- 3. To understand the File management in C.

Course Outcomes (CO)

K1	CO1	Remembering the structure of program development in C.	
K2	CO2	Understanding the use of decision making and looping.	
K3	CO3	Applying the concepts of Arrays in different programs.	
K4	CO4	Examining the complexity of problems, modularize the problems into	
		small modules and then convert them into programs.	

Programme Code: 02		M. Sc Mathematics		
Course Code: 18PMA2CL				
		Core Practical 1-Pr	rogramming in ${\sf C}$ - ${\sf I}$	Practical
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	II	2	30	2

Course Objectives

- 1. To find the solutions of non-linear ordinary differential equations using C programs.
- 2. To get practical experience of the programs in Matrix manipulations and Dynamic memory allocations.
- 3. To enhance the students to develop the program writing skills for mathematical problems

K3	CO1	Utilizing C program for finding the Numerical solutions of Algebraic	
		and Transcendental Equations.	
K4	CO2	Analyzing the programs involving loops and functions.	
K5	CO3	Applying, compiling and debugging programs in C language.	

Programme Code: 02		M. Sc Mathematics		
Course Code:	18PMA309	Core Paper 9 TOPOLOGY		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	III	7	105	5

- 1. To get basic knowledge in topology and topological spaces.
- 2. To study the concepts of Compactness and Connectedness.
- 3. To know the concept of countability axioms.

Course Outcomes (CO)

K1	CO1	Recalling the concept of Basis for a topology.		
K2	CO2	Classifying the ideas of product topology and metric topology.		
K3	CO3	Applying countability and separation axioms in proving Urysohn		
		lemma and Urysohn Metrization theorem.		
K4	CO4	Analyzing the concepts of limit point compactness and local		
		compactness.		

Programme Code: 02		M. Sc Mathematics		
Course Code:	18PMA310	Core Paper 10 FUNCTIONAL ANALYSIS		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	III	7	105	5

Course Objectives

- 1. To know the concepts of Normed linear spaces, Banach spaces and Hilbert spaces.
- 2. To understand the ideas of Uniform boundedness principles, closed graph theorem and Open mapping theorem.
- 3. To comprehend the notions of spectral radius, the spectral theorem and Operators on Hilbert spaces.

K1	CO1	Remembering the concepts of semi norms and Quotient spaces.	
K2	CO2	Understanding the ideas of Uniform boundedness principles.	
K3	CO3	Applying the concepts of eigen spectrum on normed linear spaces and	
		spectral radius on Banach spaces.	
K4	CO4	Analyzing the results of Adjoint, Self-Adjoint, Normal and Unitary	
		Operators defined on Hilbert spaces.	

Programme Code: 02		M. Sc Mathematics		
Course Code:	18PMA311	Core Paper 11 MATHEMATICAL STATISTICS		STATISTICS
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	III	7	105	5

- 1. To study the concepts of random variables and different types of distributions.
- 2. To determine the moments of the distribution function by using the characteristic functions.
- 3. To understand the Methods of finding estimates, Sample moments and their functions

Course Outcomes (CO)

K1	CO1	Remembering the random events and random variables of different
		distributions.
K2	CO2	Classifying the properties of characteristic functions of various
		distributions.
K3	CO3	
		Identifying the types of estimates for various probability distribution
		functions.
K4	CO4	Analyzing the functions by using various significance tests.

Programme Code: 02		M. Sc Mathematics		
Course Code:	18PMA412	Core Paper 12	MATHEMATICA	L METHODS
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	IV	7	105	5

Course Objectives

- 1. To study the concept of Fourier transforms.
- 2. To impart analytical ability in solving variational problems and integral equations.
- 3. To use calculus of variation to find the extremum of a functional.

K1	C	O1	Finding the solution of Fredholm and Volterra Integral equations.			
K2	C	O2	Explaining the method to reduce the differential equations to Integral			
			equations.			
K3	CO	3				
			Solving Max	imum or minimum o	of a functional using	Calculus of
			Variation Tec	hniques.		
K4	CO	4	Analyzing the Euler's finite difference method, the Ritz method and			
			Kantorovich's method.			
Pro	Programme Code: 02			M. Sc Mathematics	3	
Course Code:18PMA413		Core Pap	er 13 CONTROL	ГНЕОRY		
Batcl	h	S	Semester	Hours / Week	Total Hours	Credits
2018-20	020		IV	7	105	5

- 1. To know the basic results of Differential Equations and Fixed Point Methods.
- 2. To study the basics of observability, controllability, stability, stability, optimal Control of linear and nonlinear system.
- 3. To develop skills to review research papers in the field of Controllability Problems.

Course Outcomes (CO)

K1 CO1		Choosing ordinary differential equations through state-space
K1	COI	representations towards analyzing and designing dynamical systems.
K2	CO2	Understanding mathematical techniques to formulate and solve control
K2	CO2	theory problems.
К3	CO3	Solving the stability of the given linear and nonlinear system using
K3	CO3	matrix theory.
K4	CO4	Analyzing various optimal control formulations and necessary
N4	CO4	conditions of optimal control.

Programme Code: 02			M. Sc Mathematics	}
Course Code:18PMA414		Core Paper 14 OBJECT ORIENTED		
		PROGRAMMING WITH C++ - THEORY		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	IV	5	75	3

Course Objectives

- 1. To enable the students to learn about the basic concepts of Object Oriented Programming Techniques, class structure, operators, functions in C++ and operators Overloading and Type Conversions.
- 2. To know the differences between object oriented programming and procedure oriented programming.
- 3. To apply object oriented techniques to solve the computing Problems.

K1	CO1	Finding solutions for problems in Mathematics, Engineering, Science
K1	KI COI	and Technology using Object Oriented Programming.
K2	CO2	Classifying secured and unsecured data processing by applying
KZ	K2 CO2	Abstraction, Encapsulation and Information hiding.
К3	CO3	Constructing programmes using C++ features such as composition of
K3	CO3	objects, Inheritance and Polymorphism.
V.A	CO4	Analyzing the concepts of Object Oriented Programming to solve real
K4	CO4	world problems.

Programme Code: 02	M. Sc Mathematics
Course Code:18PMA4CM	Core Practical 2 OBJECT ORIENTED

		PROGRAMMING WITH C++ - PRACTICAL		
Batch	Semester	Hours / Week	Total Hours	Credits
2018-2020	IV	2	30	2

- 1. To identify and formulate the techniques of software development using Object Oriented Programming concepts.
- 2. To find the solution of complex problems spanning the breadth of the C++ Programming language.
- 3. To write programs for problems in various domains like Mathematics, Science, Technology and real world problems.

Course Outcomes (CO)

К3	CO1	Applying the concepts of Object Oriented Program for building object
113	001	based applications.
K4	CO2	Analyzing different logic with suitable validations for a given problem.
V5	CO3	Interpret and design the Exception Handling Techniques for resolving
K5	CO3	run-time errors using file I/O.

Programme Code: 02	M. Sc Mathematics
Course code: 18PMA4Z1	Project
Batch 2018-2020	Credits :2

Course Objectives

- 1. To study the basic concepts related to the Project work.
- 2. To know the respective research fields.
- 3. To know the concept of writing a dissertation in an effective way.

K3	CO1	Applying the relative notions in the respective areas and finding the
		results.
K4	CO2	Analyzing results with the existing results.
K5	CO3	Interpreting the results with suitable examples.

Programme Code: 02	M. Sc Mathematics		
Course code: 18PMA0D1	ALC 1 DISCRETE MATHEMATICS AND		
	AUTOMATA THEORY		
Batch 2018-2020	Credits 2		

- 1. To understand mathematical foundations to create mathematical arguments.
- 2. To enable to know how lattices and Boolean algebra are used as mathematical models of network systems.
- 3. To know about Automata Theory and its applications.

Course Outcomes (CO)

K1	CO1	Remembering the concepts of Mathematical logic.
K2	CO2	Explaining the implication problems using truth table, replacement
		process and rules of inference.
K3	CO3	Solving normal forms of given logical expression.
K4	CO4	Analyzing Karnaugh map for simplifying the Boolean expression.

Programme Code : 02	M. Sc Mathematics
Course code: 18PMA0D2	ALC 2 ASTRONOMY
Batch 2018-2020	Credits 2

Course Objectives

- 1. To acquire the knowledge about the celestial objects and planets.
- 2. Develop skills to design observing projects with research telescopes and projects drawing upon data in the literature and in archives.
- 3. To be familiar with the appearance of a range of common astronomical objects, such as asteroids, comets, satellites, planets, stars, and galaxies.

K1	CO1 •	Defining about the observed properties of physical systems that
		comprise the known universe.
K2	CO2	Demonstrate their ability to read, understand, and critically analyze the
		astronomical/physical concepts
K3	CO3	Applying their physics and mathematical skills to problems in the areas of
		planetary science.
K4	CO4	Analyze to draw valid scientific conclusions and communicate those

	conclusions in a clear and articulate manner.
--	---

Programme Code: 02	M. Sc Mathematics		
Course code: 18PMA0D3	ALC 3 INTERNET AND JAVA PROGRAMMING		
Batch 2018-2020	Credits 2		

- 1 To understand the difference between C, C++ and Java Programs.
- 2 To explore the Java Applications and to identify the variations between Stand alone java applications and Web based applications.
- 3 To provide the advanced concepts in java programming like Package, Multi Thread and Applet.

Course Outcomes (CO)

K1	CO1	Remembering the basic concepts of OOPs, Data Types, Control Statements
		and Tokens.
K2	CO2	Understanding about the java statements.
K3	CO3	Applying the concept of Package, Thread and Applet in program
K4	CO4	Inspect the java concepts and get the new innovative ideas.

Programme Code : 02		M. Sc Mathematics	
Major Elective Paper FLUID DYNAMICS			
Batch	Hours / Week	Total Hours	Credits
2018-2020	7	105	5

Course Objectives

- 1. To have a good understanding of the fundamental equation of viscous compressible fluid.
- **2.**To enable to Bernoulli equations, Momentum theorems and its applications.
- **3.**To understand the motion of solid bodies in fluid and sound knowledge of boundary layer theory.

K1	CO1	Defining the fundamental aspects of fluid flow behaviour.
K2	CO2	Classifying the flow patterns of a fluid (gas or liquid) depend on its
		characteristic.
K3	CO3	Utilizing the fluid dynamics to analyze the flow of air over the surface
		to calculate pressure, changes in velocity using the Blasius's equation.
K4	CO4	Analyzing the steady state kinetic energy equation for fluid flow
		systems and estimate pressure drop in fluid flow systems.

Programme Code: 02	M. Sc Mathematics		
Major Elective Paper - ADVANCED OPERATIONS RESEARCH			
Batch	Hours / Week	Total Hours	Credits
2018-2020	7	105	5

- 1. It enables students to acquire the knowledge of mathematics and statistics.
- 2. The study helps to locate the best or optimal solutions to a problem.
- 3. It sharpens the students brain in making quick decisions in an administrative situation.

Course Outcomes (CO)

K1	CO1	Recalling various methods of solving linear programming problem.
K2	CO2	Classifying duality and dual simplex method, pure and mixed integer
		programming problem, solution of revised simplex method and bounded
		variable problems.
K3	CO3	Applying the concept of sequencing problem techniques to find total
		elapsed time for processing n jobs through 2 machines, n jobs through k
		machines and 2 jobs through k machines.
K4	CO4	Categorizing various types of queuing models and classify the queuing
		problems that belongs to which model and solve the given queueing
		system. Distinguish linear and non linear programming problems.

Programme Code: 02	M. Sc Mathematics			
Major Elective Paper FUNDAMENTALS OF ACTUARIAL MATHEMATICS				
Batch	Hours / Week	Total Hours	Credits	
2018-2020	7	105	5	

Course Objectives

- 1 To use standard techniques of mathematics to solve problems in actuarial science
- 2. To calculate the values of Annuity and Annuity dues .
- 3. To know the concepts of Life insurance premiums, Temporary assurance, Whole Life assurance and the values of policies.

K1	CO1	Remembering the concept of Insurance policies and its benefits.	
K2	CO2	Understanding the consequences of events involving risk and	
		uncertainity.	
K3	CO3	Applying various modelling techniques to evaluate quantitative risk	
		analysis.	
K4	CO4	Analysing the appropriate Life insurance plans suitable for the	
		individual or concern.	

Programme Code: 02		M. Sc Mathematics	
Major Ele	PTOGRAPHY		
Batch 2018-2020	Hours / Week	Total Hours	Credits
	7	105	5

- 1. To enable the students to acquire the knowledge about Classical Cipher Systems, Shift Registers and Public Key systems.
- 2. To be familiar with information security awareness and a clear understanding of its importance.
- 3. To be exposed to the importance of integrating people, processes and technology.

Course Outcomes (CO)

K1	CO1	Remembering the basic encryption techniques.
K2	CO2	Understanding the cryptographic theories, principles and technique
		used in security properties.
K3	CO3	Constructing a range of different cryptosystems from an applied view
		point.
K4	CO4	Analyzing the methods of Cryptography

Programme Code: 02		M. Sc Mathematics			
Non Major Elective Paper SYSTEMS ANALYSIS AND DESIGN					
Batch 2018-2020 Hours / Week Total Hours Credits					
	4	60	5		

Course Objectives

- 1. To enable the learners to understand the concepts of Foundations for systems development, Structuring system requirements and Designing Data bases.
- 2. To explain the principles, methods and techniques of systems development.
- 3. To elaborate on the application areas for different types of methods.

K1	CO1	Defining and describe the phases of the system development life cycle.
K2	CO2	Demonstrating the forms and reports and designing interfaces.
K3	CO3	Building the system development alternatives.
K4	CO4	Examining the system analysis problems.

Programme Code: 02	M. Sc Mathematics		
Non-Major Elective Paper VISUAL BASIC AND ORACLE			
Batch	Hours / Week	Total Hours	Credits
2018-2020	4	60	5

- 1. To develop visual programming skills for modern software development.
- 2. To get the knowledge on Graphical User Interface.
- 3. To apply Visual Basic controls in data base management system.

Course Outcomes (CO)

K1	CO1	Remembering the fundamentals of visual basic and procedures.
K2	CO2	Understanding the Visual Basic controls and command button
		properties.
K3	CO3	Making use of visual data manager and data bound control for the
		database programming with Visual Basic.
K4	CO4	Analyzing the connection between ORACLE and VB.

Programme Code: 02 M. Sc Mathematic					
Non Major Elective Paper: FUZZY LOGIC AND NEURAL NETWORKS					
Batch Hours / Week Total Hours Credits					
2018-2020	4	60	5		

Course Objectives

- 1. To understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy operations and fuzzy logic.
- 2. To know the concepts of neural networks and neuro-modeling.
- 3. To study the basics of neural network architectures and some learning algorithms.

K1	CO1	Recalling the difference between crisp set theory and fuzzy set theory.		
K2	CO2	Explaining the concepts of operations on fuzzy set.		
K3	CO3	Applying the learning methods in neural network architectures.		
K4	CO4	Examining the Back propagation learning algorithm.		

Programme Code: 02	M. Sc Mathematics				
Non Major Elective Paper MEASURE AND INTEGRATION					
Batch Hours / Week Total Hours Credits					
2018-2020	4	60	5		

- 1.
- 2.
- Course Objectives

 To understand the concepts of Measurable functions and Integrable functions.

 To know about Lebesgue measure and Lebesgue integral.

 To apply measurable functions in convegence theorems and The Radon Nikodym 3. theorem.

K1	CO1	Remembering the concepts of Measure and outer measure
K2	CO2	Classifying the difference between various measures
K3	CO3	Applying measure theory in theorems like monotone convergence
		theorem, bounded convergence theorem.
K4	CO4	Analyzing L ^p spaces.

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

Re-accredited by NAAC with 'A' Grade – 3.64 CGPA out of 4 (3rd Cycle)

College of Excellence (UGC)

Coimbatore – 641 029

DEPARTMENT OF MATHEMATICS (Aided)

COURSE OUTCOMES (CO)

M.Sc. Mathematics

For the students admitted In the Academic Year 2019-2020

Programmo	e Code: 02	M.Sc Mathematics		
Course Code: 19PMA101		Core Paper 1 – Algebra		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2021	I	7	105	5

- 1. To study groups, rings, fields and linear transformations which are widely used in many research fields and the concepts of mappings are applied in the subjects like analysis and topology.
- 2. To show the needs from which a modern mathematical attitude may grow and it is of great help in any further axiomatic study of mathematics.
- 3. To study the concept of linear transformations using matrices. Also, Contemporary mathematics and mathematical physics make extensive use of abstract algebra.

K1	CO1	Remembering the concept of rings, fields and extension fields.
K2	CO2	Understanding the difference between algebraic and transcendental extensions; be able to find the minimal polynomial for algebraic elements over a field and be able to prove whether a polynomial is irreducible over a given field.
К3	CO3	Applying Sylow's theorems to determine the structure of certain groups of small order and also Gauss lemma, Eisentein criterion for irreducibility of rationals.
K4	CO4	Analyzing Galois groups in simple cases and to apply the group theoretic information to deduce results about fields and polynomials.

Programme Code: 02		M.Sc Mathematics		
Course Code	: 19PMA102	Core Paper 2 - REAL ANALYSIS		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2021	I	6	90	5

- 1. To learn about advanced topics in Riemann's Stieltjes Integrals.
- 2. To study the mean value theorem for Riemann and Riemann's Stieltjes integrals.
- 3. To study directional derivatives, total derivatives, Jacobian determinant and their applications.

K1	
K2	
K3	
K4	
·	

Programm	e Code: 02	M. Sc Mathematics		
Course Code: 19 PMA103		Core Paper 3-Ordinary Differential Equations		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2021	I	7	105	5

- 1. To understand the concepts of fundamental matrix and successive approximation for finding solution.
- 2. To enable the students to know the concepts of non-homogeneous linear systems with constant co-efficient and periodic co-efficient.
- 3. To gain knowledge in the area of linear oscillations and non-linear oscillations.

Course Outcomes (CO)

K1	CO1	Remembering the different types of differential equations.	
K2	CO2	Understanding the concept of linear oscillations and non-linear	
		oscillations.	
K3	CO3	Applying the notions of fundamental matrix and successive	
		approximations in the system of differential equations.	
K4	CO4	Analyzing the non-homogeneous linear systems with constant co-	
		efficient and periodic co-efficient.	

Programm	e Code: 02	M. Sc Mathematics		
Course Code	e:19PMA104	Core paper 4 - NUMERICAL METHODS		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2021	I	6	90	4

- 1. To solve the linear equations, non-linear equations and interpolating the values using numerical methods.
- 2. To obtain the solution of Boundary Value Problems and Characteristic Value Problems using Numerical Methods.
- 3. To find the Solution of Ordinary Differential Equations and Partial Differential Equations using Numerical methods.

K1	CO1	Remembering various numerical methods for finding the solution of		
		algebraic and transcendental equations.		
K2	CO2	Demonstrating various numerical algorithms for solving simultaneous		
		linear algebraic equations.		
K3	CO3	Applying various numerical methods to solve differential equations.		
K4	CO4	Analyzing the Boundary Value Problems and Characteristic Value		
		Problems.		

Programme	M. Sc Mathematics				
Code : 02					
Course Code	: 19PMA205 Core Paper 5 - COMPLEX ANALYSIS				
Batch	Semester Hours / Week Total Hours Credits				
2019-2021	II	II 7 105 4			

Course Objectives

- 1. To study Cauchy's theorem and applying it for a rectangle and a disk.
- 2. To know various types of singularities and evaluation of definite integrals using residues.
- 3. To understand the concept of power series expansions and canonical products.

Course Outcomes (CO)

K1	CO1	Recalling rectifiable arcs and line integrals as functions of arcs.	
K2	CO2	Explaining the concepts of Local mapping theorem, Cauchy residue	
		theorem and its applications.	
K3	CO3	Applying the Residue theorem on definite integrals.	
K4	CO4	Analyzing the Riemann mapping theorem and Schwarz – Christoffel	
		formula.	

Programme Code: 02		M.Sc Mathematics		
Course Code: 19PMA206		Core Paper 6 - Partial Differential Equations		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2021	II	6	90	5

- 1. To study linear partial differential equations and non-linear partial differential equations.
- 2. To know the concept of partial differential equations and their role in modern mathematics.
- 3. To understand the concepts of wave equations and diffusion equations.

K1	CO1	Finding the solutions of the heat equation, wave equation and the		
		Laplace equation subject to boundary conditions		
K2	CO2	Understanding the method of separation of variables and the method		
		of integral transforms.		
K3	CO3	Applying calculus of variations in finding elementary solutions of		
		diffusion equations.		
K4	CO4	Analyzing the solutions of non-linear partial differential equations by		
		using Charpit's and Jacobi's methods.		

Programm	e Code: 02	M. Sc Mathematics		
Course Code: 19PMA207		Core Paper 7- MECHANICS		
Batch Semester		Hours / Week	Total Hours	Credits
2019-2021	II	6	90	5

Course Objectives

- 1. To know the basic concepts of the Mechanical system.
- 2. To understand about the constraints, differential forms and Generating functions
- 3. To acquire knowledge about mechanical concepts to solve various problems in Mechanics.

Course Outcomes (CO)

K1	CO1	Remembering the concepts of generalized co-ordinates and constraints.				
K2	CO2	Explaining the deriva-	tion of Lagrange's a	and Hamilton equati	ons.	
K3	CO3	Applying Hamilton P	rinciple for deriving	Hamilton Jacobi Ec	uation.	
K4	CO4	Analyzing the Lagrange's and Poisson Brackets.				
	Programme Code: 02 M. Sc Mathematics					
C	Course Cod	e: 19PMA208	Core Paper	8-Programming in	C – Theory	
	Batch Semester		Hours / Week	Total Hours	Credits	
2019-2021		II	5	75	3	

- 1. To understand the logical structure of a C program and to develop different programs in 'C' language.
- 2. To know the concepts of Arrays and Pointers.

3. To understand the File management in C.

Course Outcomes (CO)

K1	CO1	Remembering the structure of program development in C.
K2	CO2	Understanding the use of decision making and looping.
K3	CO3	Applying the concepts of Arrays in different programs.
K4	CO4	Examining the complexity of problems, modularize the problems into
		small modules and then convert them into programs.

Programm	e Code: 02	M. Sc Mathematics		
Course Code:	19PMA2CL			
		Core Practical 1-Programming in C - Practical		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2021	II	2	30	2

Course Objectives

- 1. To find the solutions of non-linear ordinary differential equations using C programs.
- 2. To get practical experience of the programs in Matrix manipulations and Dynamic memory allocations.
- 3. To enhance the students to develop the program writing skills for mathematical problems

Course Outcomes (CO)

K3	CO1	Utilizing C program for finding the Numerical solutions of Algebraic
		and Transcendental Equations.
K4	CO2	Analyzing the programs involving loops and functions.
K5	CO3	Applying, compiling and debugging programs in C language.

Programm	e Code: 02	M. Sc Mathematics		
Course Code:	19PMA309	Core Paper 9 TOPOLOGY		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2021	III	7	105	5

Course Objectives

1. To get basic knowledge in topology and topological spaces.

- 2. To study the concepts of Compactness and Connectedness.
- 3. To know the concept of countability axioms.

K1	CO1	Recalling the concept of Basis for a topology.				
K2	CO2	Classifying the ideas of product topology and metric topology.				
K3	CO3	Applying countability and separation axioms in proving Urysohn				
		lemma and Urysohn Metrization theorem.				
K4	CO4	Analyzing the concepts of limit point compactness and local				
		compactness.				

Programm	e Code: 02	M. Sc Mathematics		
Course Code:	19PMA310	Core Paper 10 FUNCTIONAL ANALYSIS		
Batch Semester		Hours / Week	Total Hours	Credits
2019-2021	III	7	105	5

Course Objectives

- 1. To know the concepts of Normed linear spaces, Banach spaces and Hilbert spaces.
- 2. To understand the ideas of Uniform boundedness principles, closed graph theorem and Open mapping theorem.
- 3. To comprehend the notions of spectral radius, the spectral theorem and Operators on Hilbert spaces.

Course Outcomes (CO)

K1	C	O1	Remembering the concepts of semi norms and Quotient spaces.					
K2	C	Э2	Understa	nding the ideas of Unifo	orm boundedness pr	inciples.		
K3	CO	3	Applying	the concepts of eigen s	pectrum on normed	linear spaces and		
			spectral r	spectral radius on Banach spaces.				
K4	CO	4	Analyzing the results of Adjoint, Self-Adjoint, Normal and Unitary					
			Operators defined on Hilbert spaces.					
Programme Code: 02 M. Sc Mathematics								
Course C	Code:	19P	OPMA311 Core Paper 11 MATHEMATICAL STATISTIC		STATISTICS			
Batch Semester		emester	Hours / Week	Total Hours	Credits			
2019-20)21		III	7	105	5		

- 1. To study the concepts of random variables and different types of distributions.
- 2. To determine the moments of the distribution function by using the characteristic functions.
- 3. To understand the Methods of finding estimates, Sample moments and their functions

K1	CO1	Remembering the random events and random variables of different
		distributions.
K2	CO2	Classifying the properties of characteristic functions of various
		distributions.
K3	CO3	
		Identifying the types of estimates for various probability distribution
		functions.
K4	CO4	Analyzing the functions by using various significance tests.

Programme	Code : 02	M. Sc Mathematics		
Course Code:	19PMA412	Core Paper 12	MATHEMATICA	L METHODS
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2021	IV	7	105	5

Course Objectives

- 1. To study the concept of Fourier transforms.
- To impart analytical ability in solving variational problems and integral equations.
 To use calculus of variation to find the extremum of a functional.

Course Outcomes (CO)

K1	CO1	Finding the solution of Fredholm and Volterra Integral equations.
K2	CO2	Explaining the method to reduce the differential equations to Integral
		equations.
K3	CO3	
		Solving Maximum or minimum of a functional using Calculus of
		Variation Techniques.
K4	CO4	Analyzing the Euler's finite difference method, the Ritz method and
		Kantorovich's method.

Programm	e Code: 02	M. Sc Mathematics		
Course Code:	:19PMA413	Core Paper 13 CONTROL THEORY		
Batch Semester		Hours / Week	Total Hours	Credits
2019-2021	IV	7	105	5

- 1. To know the basic results of Differential Equations and Fixed Point Methods.
- 2. To study the basics of observability, controllability, stability, stabilizability, optimal Control of linear and nonlinear system.

3. To develop skills to review research papers in the field of Controllability Problems.

Course Outcomes (CO)

K1	CO1	Choosing ordinary differential equations through state-space	
K1	COI	representations towards analyzing and designing dynamical systems.	
K2	CO2	Understanding mathematical techniques to formulate and solve control	
K2	CO2	theory problems.	
K3 CO3		Solving the stability of the given linear and nonlinear system using	
K.5	CO3	matrix theory.	
K4	CO4	Analyzing various optimal control formulations and necessary	
K 4		conditions of optimal control.	

Programm	e Code: 02		M. Sc Mathematics	}
Course Code:19PMA414		Core Paper 14 OBJECT ORIENTED PROGRAMMING WITH C++ - THEORY		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2021	IV	5	75	3

Course Objectives

- 1. To enable the students to learn about the basic concepts of Object Oriented Programming Techniques, class structure, operators, functions in C++ and operators Overloading and Type Conversions.
- 2. To know the differences between object oriented programming and procedure oriented programming.
- 3. To apply object oriented techniques to solve the computing Problems.

Course Outcomes (CO)

99999999999K	CO1	Finding solutions for problems in Mathematics, Engineering,
1	COI	Science and Technology using Object Oriented Programming.
K2	CO2	Classifying secured and unsecured data processing by applying
N2	CO2	Abstraction, Encapsulation and Information hiding.
W2	CO3	Constructing programmes using C++ features such as
K3	CO3	composition of objects, Inheritance and Polymorphism.
IZ A	CO4	Analyzing the concepts of Object Oriented Programming to
K4	CO4	solve real world problems.

Programm	e Code: 02		M. Sc Mathematics	
Course Code:	19PMA4CM	Core Practical 2 OBJECT ORIENTED		
		PROGRAMM	MING WITH C++ -	PRACTICAL
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2021	IV	2	30	2

Course Objectives

1. To identify and formulate the techniques of software development using Object Oriented

- Programming concepts.
- 2. To find the solution of complex problems spanning the breadth of the C++ Programming language.
- 3. To write programs for problems in various domains like Mathematics, Science, Technology and real world problems.

К3	CO1	Applying the concepts of Object Oriented Program for building object based applications.
K4	CO2	Analyzing different logic with suitable validations for a given problem.
K5	CO3	Interpret and design the Exception Handling Techniques for resolving run-time errors using file I/O.

rogramme Code : 02	M. Sc Mathematics
Course code: 19PMA4Z1	Project
Batch 2019-2021	Credits :2

Course Objectives

- 1. To study the basic concepts related to the Project work.
- 2. To know the respective research fields.
- 3. To know the concept of writing a dissertation in an effective way.

Course Outcomes (CO)

K3	CO1	Applying the relative notions in the respective areas and finding the
		results.
K4	CO2	Analyzing results with the existing results.
K5	CO3	Interpreting the results with suitable examples.

Programme Code: 02	M. Sc Mathematics
Course code: 19PMA0D1	ALC 1 DISCRETE MATHEMATICS AND
	AUTOMATA THEORY
Batch 2019-2021	Credits 2

- 1. To understand mathematical foundations to create mathematical arguments.
- 2. To enable to know how lattices and Boolean algebra are used as mathematical models of network systems.
- 3. To know about Automata Theory and its applications.

K1	CO1	Remembering the concepts of Mathematical logic.
K2	CO2	Explaining the implication problems using truth table, replacement
		process and rules of inference.
K3	CO3	Solving normal forms of given logical expression.
K4	CO4	Analyzing Karnaugh map for simplifying the Boolean expression.

Programme Code: 02	M. Sc Mathematics
Course code: 19PMA0D2	ALC 2 ASTRONOMY
Batch 2019-2021	Credits 2

Course Objectives

- 1. To acquire the knowledge about the celestial objects and planets.
- 2. Develop skills to design observing projects with research telescopes and projects drawing upon data in the literature and in archives.
- 3. To be familiar with the appearance of a range of common astronomical objects, such as asteroids, comets, satellites, planets, stars, and galaxies.

K1	CO1 •	Defining about the observed properties of physical systems that
		comprise the known universe.
K2	CO2	Demonstrate their ability to read, understand, and critically analyze the
		astronomical/physical concepts_
K3	CO3	Applying their physics and mathematical skills to problems in the areas of
		planetary science.
K4	CO4	Analyze to draw valid scientific conclusions and communicate those
		conclusions in a clear and articulate manner.

Programme Code : 02	M. Sc Mathematics
Course code: 19PMA0D3	ALC 3 INTERNET AND JAVA PROGRAMMING
Batch 2019-2021	Credits 2

- 1. To understand the difference between C, C++ and Java Programs.
- 2. To explore the Java Applications and to identify the variations between Stand alone java applications and Web based applications.
- 3. To provide the advanced concepts in java programming like Package, Multi Thread and Applet.

Course Outcomes (CO)

K1	CO1	Remembering the basic concepts of OOPs, Data Types, Control Statements
		and Tokens.
K2	CO2	Understanding about the java statements.
K3	CO3	Applying the concept of Package, Thread and Applet in program
K4	CO4	Inspect the java concepts and get the new innovative ideas.

Programme Code: 02		M. Sc Mathematics	5
Major Elective Paper FLUID DYNAMICS			
Batch	Hours / Week	Total Hours	Credits
2019-2021	7	105	5

Course Objectives

- 1.To have a good understanding of the fundamental equation of viscous compressible fluid.
- **2.**To enable to Bernoulli equations, Momentum theorems and its applications.
- **3.**To understand the motion of solid bodies in fluid and sound knowledge of boundary layer theory.

Course Outcomes (CO)

K1	CO1	Defining the fundamental aspects of fluid flow behaviour.
K2	CO2	Classifying the flow patterns of a fluid (gas or liquid) depend on its
		characteristic.
K3	CO3	Utilizing the fluid dynamics to analyze the flow of air over the surface
		to calculate pressure, changes in velocity using the Blasius's equation.
K4	CO4	Analyzing the steady state kinetic energy equation for fluid flow
		systems and estimate pressure drop in fluid flow systems.

Programme Code: 02 M. Sc Mathematics						
Major Elective Paper - GRAPH THEORY						
Batch	Batch Hours / Week Total Hours Credits					
2019-2021	7	105	5			

Course Objectives

1. It enables students to impart the different concepts of theory of graphs.

- 2. The study helps to modelling the real word problems to get solutions.
- 3. It motivates the students to pursue research.

K1	CO1	Remembering different types of graphs and their applications
K2	CO2	Understand various operations on graphs
K3	CO3	Analysis the applications of different parameters of a graph.
K4	CO4	Applying the concept of chromatic and domination numbers and its real
		life applications

Programme Code: 02	M. Sc Mathematics		
Major Elective Paper FUNDAMEN	TALS OF ACTUAR	SIAL MATHEMATI	CS
Batch	Hours / Week	Total Hours	Credits
2019-2021	7	105	5

Course Objectives

- 1 To use standard techniques of mathematics to solve problems in actuarial science
- 2. To calculate the values of Annuity and Annuity dues .
- 3. To know the concepts of Life insurance premiums, Temporary assurance, Whole Life assurance and the values of policies.

Course Outcomes (CO)

K1	CO1	Remembering the concept of Insurance policies and its benefits.	
K2	CO2	Understanding the consequences of events involving risk and	
		uncertainity.	
K3	CO3	Applying various modelling techniques to evaluate quantitative risk	
		analysis.	
K4	CO4	Analysing the appropriate Life insurance plans suitable for the	
		individual or concern.	

Programme Code: 02		M. Sc Mathematics	}
Major Ele	ective Paper CRYI	PTOGRAPHY	
Batch 2019-2021	Hours / Week	Total Hours	Credits
	7	105	5

- 1. To enable the students to acquire the knowledge about Classical Cipher Systems, Shift Registers and Public Key systems.
- 2. To be familiar with information security awareness and a clear understanding of its importance.
- 3. To be exposed to the importance of integrating people, processes and technology.

K1	CO1	Remembering the basic encryption techniques.
K2	CO2	Understanding the cryptographic theories, principles and technique
		used in security properties.
K3	CO3	Constructing a range of different cryptosystems from an applied view
		point.
K4	CO4	Analyzing the methods of Cryptography

Programme Code: 02	M. Sc Mathematics			
Non Major Elective Paper SYSTEMS ANALYSIS AND DESIGN				
Batch 2019-2021	Hours / Week	Total Hours	Credits	
	4	60	5	

Course Objectives

- 1. To enable the learners to understand the concepts of Foundations for systems development, Structuring system requirements and Designing Data bases.
- 2. To explain the principles, methods and techniques of systems development.
- 3. To elaborate on the application areas for different types of methods.

Course Outcomes (CO)

K1	CO1	Defining and describe the phases of the system development life cycle.
K2	CO2	Demonstrating the forms and reports and designing interfaces.
K3	CO3	Building the system development alternatives.
K4	CO4	Examining the system analysis problems.

Programme Code: 02		M. Sc Mathematics	
Non-Major Elective l	Paper VISUAL BA	SIC AND ORACLI	E
Batch	Hours / Week	Total Hours	Credits
2019-2021	4	60	5

Course Objectives

1. To develop visual programming skills for modern software development.

- 2. To get the knowledge on Graphical User Interface.
- 3. To apply Visual Basic controls in data base management system.

K1	CO1	Remembering the fundamentals of visual basic and procedures.
K2	CO2	Understanding the Visual Basic controls and command button
		properties.
K3	CO3	Making use of visual data manager and data bound control for the
		database programming with Visual Basic.
K4	CO4	Analyzing the connection between ORACLE and VB.

Programme Code: 02		M. Sc Mathematics			
Non Major Elective Paper : FUZZY LOGIC AND NEURAL NETWORKS					
Batch	Hours / Week	Total Hours	Credits		
2019-2021	4	60	5		

Course Objectives

- 1. To understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy operations and fuzzy logic.
- 2. To know the concepts of neural networks and neuro-modeling.
- 3. To study the basics of neural network architectures and some learning algorithms.

Course Outcomes (CO)

K1	CO1	Recalling the difference between crisp set theory and fuzzy set theory.
K2	CO2	Explaining the concepts of operations on fuzzy set.
K3	CO3	Applying the learning methods in neural network architectures.
K4	CO4	Examining the Back propagation learning algorithm.

Programme Code: 02		M. Sc Mathematics		
Non Major Elective Paper MEASURE AND INTEGRATION				
Batch	Hours / Week	Total Hours	Credits	
2019-2021	4	60	5	

Course Objectives

1. To understand the concepts of Measurable functions and Integrable functions.

- To know about Lebesgue measure and Lebesgue integral.
 To apply measurable functions in convegence theorems and The Radon Nikodym theorem.

K1	CO1	Remembering the concepts of Measure and outer measure
K2	CO2	Classifying the difference between various measures
K3	CO3	Applying measure theory in theorems like monotone convergence
		theorem, bounded convergence theorem.
K4	CO4	Analyzing L ^p spaces.