KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) COIMBATORE – 641029

Re-accredited by NAAC with 'A⁺' Grade (4th Cycle) College of Excellence (UGC) Coimbatore – 641 029

DEPARTMENT OF PHYSICS (PG) COURSE OUTCOME(CO)

M.Sc. PHYSICS

For the Students admitted in the Academic year 2022-2023

Programn	ne code : 03	M.Sc. Physics		
Title of the Paper		Core Paper 1 – Classical Mechanics		echanics
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	1	5	75	4

Course Objectives

To enable the learners to know about the

- 1. Mechanics of single and system of particle
- 2. Generalized coordinates, Lagrangian formulation and mechanics of rigid body motion
- 3. Hamiltonian formulation of mechanics, Hamilton-Jacobi theory, harmonic oscillator problem, theory and applications of small oscillations.

Course outcomes (CO)

	CO1	Know about Newtonian mechanics		
	CO2 Gain knowledge about Lagrangian formulation			
K1 to K5	CO3	Acquire knowledge about mechanics of rigid body motion.		
	CO4	Know about Hamiltonian formulation		

Sub. Code: 22PPH102

Programme	e code : 03	M.Sc. Physics		
Title of the Paper		Core Paper 2 - Mathematical Physics		
Batch 2022-2023	Semester 1	Hours/Week 5	Total Hours 75	Credits 4

Course Objectives

To enable the learners

- 1. Understand complex variables, group theory & tensors
- 2. Know about types of differential equations in Physics
- 3. Study about numerical methods

	CO1	Understanding of complex analysis including important theorems		
	COI	and determination of residues to evaluate definite integrals		
	CO2	Solve partial differential equations and be familiar with special		
K1 to K5	CO2	functions such as Bessel, Legendre and Hermite		
	CO3	Have knowledge in abstract group theory and tensors		
	CO4	Understand partial differential equations in Physics		
	CO5 Apply numerical methods to obtain appropriate solutions to			
	COS	mathematical problems		

Programn	ne code : 03	M.Sc. Physics		
Title of the Paper		Core Paper 3 – Condensed Matter Physics I		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	1	5	75	4

Course Objectives

To enable the learners to

- 1. Understand the crystal system of materials
- 2. Know about crystal imperfection and lattice vibrations
- 3. Study about lattice and electronic specific heat

Course outcomes (CO)

	CO1	Understand the crystal structure and reciprocal lattice	
CO2 Understand the crystal structure by XRD		Understand the crystal structure by XRD	
K1 to K5	CO3	Gain knowledge about crystal imperfection	
	CO4	Acquire knowledge on lattice vibrations and thermal properties	
	CO5	Acquire knowledge about lattice and electronic specific heat	

Sub. Code: 22PPH204

Programn	ne code : 03	M.Sc. Physics		
Title of the Paper		Core Paper 4 – Quantum Mechanics I		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	2	5	75	4

Course Objectives

To enable the learners to

- 1. Gain knowledge on General formalism of quantum mechanics
- 2. Gain knowledge on energy Eigenvalue problems, angular momentum and approximation methods
- 3. Understand time dependent, time independent and perturbation theories.

	CO1	Knowledge on General formalism of quantum mechanics
	CO2	Knowledge on one and three dimensional energy Eigenvalue problems
	CO3	Knowledge on energy angular momentum
K1 to K5		Acquire knowledge on time independent quantum approximation
	CO4	Methods
CO5 Understand time dependent perturbation theory ar		Understand time dependent perturbation theory and semi-classical
	003	treatment of radiation

Programme	code : 03	M.Sc. Physics		
Title of the Paper		Core Paper 5 - Thermodynamics and Statistical Mechanics		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	2	5	75	4

Course Objectives

To enabe the leaners to know about

- 1. Thermodynamics and ensembles
- 2. Classical distribution law and quantum statistics
- 3. Application of quantum statistics.

Course outcomes (CO)

	CO1	Know about thermodynamics and radiations		
	CO2	2 Acquire knowledge on ensembles		
	CO3	Get knowledge about classical distribution law		
	CO4 Get knowledge about quantum statistics			
K1 to K5	CO5	Understand applications of quantum statistics		

Sub.Code: 22PPH306

	Programn	ne code : 03		M.Sc. Physics	
	Title of the Paper		Core Paper-6		
			Thin Film Physics, Plasma Physics and Crystal Growth		
Ī	Batch	Semester	Hours/Week	Total Hours	Credits
	2022-2023	3	5	75	4

Course Objectives

To enable the learners to

- 1. Understand the preparation and characterization of thin films
- 2. Understand the fundamentals of plasma Physics
- 3. Acquire knowledge about crystal growth techniques

1 ((()))		Understand the principles, advantages and disadvantages of different thin film deposition methods
K1 to K5	CO2	Understand the growth mechanism of thin films
CO3 Understand the fundamentals of plasma		Understand the fundamentals of plasma
	CO4	Can distinguish single particle approach and fluid approach
CO5 Understand different crystal growth techniques		Understand different crystal growth techniques

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 7 - Quantum Mechanics II		chanics II
Batch	Batch Semester		Total Hours	Credits
2022-2023 3		5	75	4

Course Objectives

To enable the learners to

- 1. Understand the basic approximate methods in molecular quantum mechanics
- 2. Understand relativistic quantum theory, quantum optics
- 3. Understand quantization of fields and scattering

Course outcomes (CO)

	CO1	Understand different approximations and models to describe a many electron system
K1 to K5	CO2	Comparison of MO and VB theories to explain molecular structure of hydrogen molecule and hydrogen ion
	CO3	Understand relativistic quantum mechanics
	CO4 Acquire knowledge on quantum field theory	
	CO5 Interpret scattering theory in terms of quantum aspects.	

Sub. Code: 22PPH308

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 8 –		
		Electromagnetic Theory and Electrodynamics		ctrodynamics
Batch Semester		Hours/Week	Total Hours	Credits
2022-2023	3	5	75	4

Course Objectives

To enable the learners

- 1. Electrostatics and magnetostatics
- 2. Applications of Maxwell's equations
- 3. Antenna arrays

	CO1 Understand electrostatics and magnetostatics CO2 Acquire knowledge on field equations and conservation laws CO3 Understand the propagation of electromagnetic waves in different media on microscopic scale	
K1 to K5		
CO4 Study the interaction of electromagnetic waves with different on macroscopic scale		Study the interaction of electromagnetic waves with different media on macroscopic scale
	CO5	Acquire knowledge on relativistic electrodynamics

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 9 – Condensed Matter Physics II		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	3	4	60	4

Course Objectives

To gain knowledge about

- 1. Band theory of solids
- 2. Semiconductors, dielectrics and ferroelectrics
- 3. Magnetism and superconductors

Course Outcomes (CO)

	CO1	Knowledge on band theory of solids	
	CO2	Understand semiconductors	
K1 to K5	CO3	Acquire knowledge on superconductors	
	CO4	Gain knowledge on dielectrics and ferroelectric materials	
	CO5	Acquire knowledge on magnetism	

Sub. Code: 22PPH410

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 10 - Problems in Physics		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	4	5	75	4

Course Objectives

To enable the learners to

- 1. Acquire knowledge and skills to solve problem through the concept behind physics
- 2. Apply creative thinking techniques towards realistic problem
- 3. Visualize the basic concepts clearly

	CO1	Understand and solve problems in classical mechanics
	CO2	Understand and solve problems in quantum mechanics
K1 to K5	CO3	Understand and solve problems in electromagnetics
	CO4	Understand and solve problems in electronics
	CO5	Understand and solve problems in thermodynamics and statistical Physics

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 11 - Atomic and Molecular Spectroscopy		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	4	6	90	4

Course Objectives

To enable the learners to

- 1. Understand atomic, microwave and IR spectroscopy
- 2. Know about Raman, NMR and NQR spectroscopy
- 3. Know about ESR and Mossbauer spectroscopy

Course outcomes (CO)

	CO1 Understand atomic spectroscopy CO2 Gain knowledge on microwave and IR spectroscopy CO3 Acquire knowledge on Raman spectroscopy	
T74 4 T75		
KI to K5		
CO4 Understand NMR and NQR spectroscopy		Understand NMR and NQR spectroscopy
	CO5	Acquire knowledge on ESR and Mossbauer spectroscopy

Sub. Code: 22PPH412

Programme code: 03		M.Sc. Physics		
Title of the Paper		Core Paper 12 - Nuclear and Particle Physics		
Batch Semester		Hours/Week	Total Hours	Credits
2022-2023	4	5	75	4

Course Objectives

To enable the learners to

- 1. Know about radioactivity
- 2. Gain knowledge on Alpha and Beta particles and Gamma rays
- 3. Understand nuclear models and particle Physics

	CO1	Study the phenomenon of radioactivity
CO2 Understand Alpha and Beta particles and Gamma rays		Understand Alpha and Beta particles and Gamma rays
K1 to K5	CO3 Gain knowledge on nuclear properties	
CO4 Acquire knowledge on nuclear models		Acquire knowledge on nuclear models
	CO5	Gain knowledge on elementary particles

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Practical I – General Experiments		
Batch	Semesters	Hours/Week	Total Hours	Credits
2022-2023	1 & 2	5	150	5

Course Objectives

To enable the learners

- 1. Perform experiments in the field of general Physics
- 2. Explain physical phenomena and enable to relate physical laws and their applications
- 3. Apply standard techniques and analyze the experimental results and output.

Course outcomes (CO)

	CO1	Have a foundation in fundamentals and applications of general Physics
	CO2	Able to design, carry out record and analyze experimental data.
K3,K4,K5	CO3	Provide hands on experiences in conducting laboratory experiments.
	CO4	Understand the relationship between theory and experimental results.
	CO5	Practice record keeping of experimental work and data graphing.

Sub. Code: 22PPH2CM

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Practical II – Electronics Experiments		
Batch Semesters		Hours/Week	Total Hours	Credits
2022-2023	1 & 2	5	150	4

Course Objectives

To enable the learners

- 1. Design and construct electronic circuits
- 2. Develop experimental skills and understand relation between experimental data and theoretical analysis.
- 3. Have a foundation in the fundamentals and applications of experimental Physics.

	CO1	Acquire a basic knowledge in solid state electronics		
	CO2	Analyse and design analog electronic circuits using discrete components.		
K3,K4,K5	K3,K4,K5 CO3 Observe the amplitude / frequency response of amplifi			
CO4		Take measurements to compare experimental results in the laboratory with the theoretical analysis.		
	CO5	Practice record keeping of experimental work and data graphing.		

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Practical III – Advanced Experiments		
Batch	Semesters	Hours/Week	Total Hours	Credits
2022-2023	3 & 4	5	150	5

Course Objectives

To enable the learners to

- 1. Perform experiments in the field of advanced Physics and interpret the results.
- 2. Explain physical phenomena and enable to estimate various related parameters and to analyze them.
- 3. Apply the experimental techniques to research level.

Course outcomes (CO)

	CO1	Gain fundamental knowledge on applications of advanced Physics.
	CO2	Understand the relationship between theory and experiments
K3,K4,K5	CO3	Provide hands on experiences in conducting scientific investigations
	CO4	Provide hands on experiences in conducting laboratory experiments.
	CO5	Recording and analyzing experimental data.

Sub. Code: 22PPH4CO

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Practical IV – Special Electronic Experiments		
Batch	Semesters	Hours/Week	Total Hours	Credits
2022-2023	3 & 4	5	150	4

Course Objectives

To enable the learners to

- 1. Design and construct special electronic circuits
- 2. Develop experimental skills and understand relation between experimental data and theoretical analysis.
- 3. Have a foundation in the fundamentals and applications of experimental Physics.

		· · ·					
	CO1	CO1 Acquire knowledge in solid state electronics					
	CO2	Develop the ability to construct electronic circuits using discrete					
		components.					
K3,K4,K5	1,K5 CO3 Acquire knowledge to construct Op. amp based circuits						
	CO4	Acquire knowledge to construct microprocessor based circuits					
	CO5	Understand the relation between theory and experiments					

Programme code : 03		M.Sc. Physics		
Title of the Paper		Major Elective Paper - Electronics and Microprocessor		Microprocessor
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	1/2	5	75	5

To enable the learners to

- 1. Know about power electronics, operational amplifiers and non-linear integrated circuits
- 2. Understand architecture of microprocessors
- 3. Know about peripheral devices, interfacing and data acquisition systems.

Course Outcomes (CO)

	CO1	CO1 Understand power electronics		
K1 to K5 Gain knowledge on operational amplifiers and non-linear integral Circuits		Gain knowledge on operational amplifiers and non-linear integrated Circuits		
	CO3 Understand architecture of microprocessors			
CO4 Know about peripheral devices and interfacing				
	CO5 Know about data acquisition systems			

Programme: 03		M.Sc. Physics		
Title of the Paper		Major Elective Paper - Communication Physics		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	1/2	5	75	5

Course Objectives

To enable the learners to

- 1. Understand various modulation and detection techniques
- 2. Acquire knowledge about antennas and wave propagation
- 3. Understand generation and propagation of microwaves
- 4. Acquire knowledge on radar and communication electronics

	CO1 Understand the concept of modulation and demodulation					
		CO2 Understand the principle of antennas and wave propagation				
K1 to K5	CO3	3 Knowledge on television and radar				
	CO4 Acquire knowledge on communication electronics					
	CO5	Understand microwave generation				

Programme code : 03		M.Sc. Physics		
Title of the Paper		Major Elective Paper - Energy Physics		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	2022-2023 1/2		75	5

To enable the learners to

- 1. Know about Solar thermal and photovoltaic energy
- 2. Understand hydrogen energy, wind energy and ocean thermal energy
- 3. Understand energy auditing and carbon credits.

Course Outcomes (CO)

	CO1	Understand Solar thermal energy			
	CO2	Gain knowledge on solar photovoltaic energy			
K1 to K5	CO3	Understand wind and ocean thermal energy			
	CO4	Know about Hydrogen energy and Fuel cells			
	CO5	Understand energy auditing and carbon credits			

Programme code : 03		M.Sc. Physics		
Title of the Paper		Major Elective Paper - Industrial Physics		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	2022-2023 1 / 2		75	5

Course Objectives

To enable the learners to

- 1. Understand power electronic devices
- 2. Understand voltage regulators, switching and counting circuits
- 3. Understand industrial heating system and production of vaccum

	 CO1 Understand power electronic devices CO2 Understand voltage regulators CO3 Gain knowledge on switching and counting circuits CO4 Know about industrial heating system 	
**** ****		
K1 to K5		
	CO 5	Acquire knowledge on production of vacuum

Programme code: 03		M.Sc. Physics		
Title of the Paper		Major Elective Paper – Photovoltaic Science		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	1/2	5	75	5

To enable the learners to

- 1. Understand the science behind photovoltaics
- 2. Understand he classification of solar cells
- 3. Understand the characterization of silicon and dye sensitized solar cells

Course Outcomes (CO)

	CO1	Explain Photovoltaic and solar cell
T71 4 T75	CO2 Understand the basics about semiconductors	
K1 to K5	CO3	Classification of amorphous silicon solar cell
	CO4	Construction and working of solar cells and Thin film fabrication methods.
	CO 5	Know about preparation and mechanism of dye sensitized solar
		cell.

Programme code : 03		M.Sc. Physics		
Title of the Paper		Major Elective Paper – Problems in Physics I		
Batch Semester		Hours/Week	Total Hours	Credits
2022-2023	1/2	5	75	5

(Only problems which are specified should be asked under all sections in the question paper. No theory questions should be asked.)

Course Objectives

To enable the learners to

- 1. Acquire knowledge and skills to solve problem through the concept behind physics
- 2. Apply creative thinking techniques towards realistic problem
- 3. Visualize the basic concepts clearly

	CO1	Understand and solve problems in mathematical methods in physics
K1 to K5	CO2 Understand and solve problems in experimental techniques and data analysis	
	CO3	Understand and solve problems in atomic and molecular physics
	CO4	Understand and solve problems in condensed matter physics
	CO 5	Understand and solve problems in nuclear and particle physics

Programme code : 03		M.Sc. Physics		
Title of the Paper		Major Elective Paper - Semiconductor Devices		
Batch Semester		Hours/Week	Total Hours	Credits
2022-2023	1/2	5	75	5

To enable the learners to

- 1. Impart knowledge on application of semiconducting materials
- 2. Understand the photolithography and etching processes
- 3. Impart knowledge on IC manufacturing

Course Outcomes (CO)

	CO1	Understand silicon oxidation process			
CO2 Understand photolithography		Understand photolithography			
K1 to K5	CO3	Gain knowledge on different etching processes			
	CO4 Know about ion implantation				
	CO 5	Acquire knowledge on production of ICs			

Programme code: 03		M.Sc. Physics		
Title of the Paper		Major Elective Paper – Modern Optics		
Batch Semester		Hours/Week	Total Hours	Credits
2022-2023	1/2	5	75	5

Course Objectives

To enable the learners to

- 1. Understanding necessary and sufficient condition for laser
- 2. Understanding basic principles involved in Non-linear optical effects
- 3. Understanding different types of optical fibers and its applications

	CO1	Understand polarization and optics of solids	
T71 4 T75	CO2	Understand laser action	
K1 to K5	CO3	Gain knowledge about non-linear optics and its applications	
	CO4	Know about construction of optical fibers	
	CO 5	Acquire knowledge on applications of optical fibers	

Programme: 03			M.Sc. Physics	
Title of the Paper		Non Major Elective Paper — Nanotechnology: Principles and Applications		
Batch 2022-2023	Semester 3	Hours/Week 4	Total Hours 60	Credits 4

To enable the learners to

- 1. Understand the concepts in nanomaterials
- 2. know about different synthesis processes of nanomaterials
- 3. know about characterization techniques and applications of nanomaterials

Course Outcomes (CO)

	CO1	O1 Understand the concepts in nanomaterials	
K1 to K5	CO2	Know the synthesis methods of 0-D, 1-D, 2-D and 3-D nanomaterials	
K1 10 K3	CO3	Know the various characterization methods	
	CO4 Gain knowledge on properties of nanomaterials		
	CO5	Understand the applications of nanomaterials	

Programme code : 03			M.Sc. Physics	
Title of the Paper		Non Major Elective Paper - Intellectual Property Rights		
Batch 2022- 2023	Semester 3	Hours/Week 4	Total Hours 60	Credits 4

Course Objectives

To enable the learners

- 1. Understand the aspects of Intellectual Property Rights
- 2. Know about Patents, Copyrights, Trademarks and Registration aspects
- 3. Know about Design and Geographical Indication of IPR

	CO1	Acquire knowledge about Intellectual Property Rights
	CO2 Understand about patents and patent registration	
K1 to K5	CO3	Acquire knowledge on copyrights and registration
	CO4 Gain knowledge on trademarks and registration	
	CO5	Understand the design and geographical indication of IPR

Sub. Code: 22PGI4N2

	Programme Code: 03		M.Sc Physics		
Title of the Paper		Non-Major Elective Paper: Information Security			
	Batch	Semester	Hours/Week	Total Hours	Credits
	2022-2023 4		4	60	4

Course Objectives

- 1. Students will identify the core concepts of Information security.
- 2. To examine the concepts of Information Security.
- 3. To design and implement the security features for IT and Industrial sectors.

Course Outcomes (CO)

	CO1	To Learn the principles and fundamentals of information security.
	CO2	To Demonstrate the knowledge of Information security concepts
K1 – K5	CO3	To Understand about Information Security Architecture.
	CO4	To Analyze the various streams of security in IT and Industrial sector.
	CO5	To know about Cyber Laws and Regulations.

Programme Code: 03		M.Sc. Physics		
Title of the Paper		Non Major Elective Paper - Research Ethics		
Batch 2022-2023	Semester 4	Hours/Week 4	Total Hours 60	Credits 4

Course Objectives

To enable the learners

- 1. To understand the philosophy of science and ethics,
- 2. To know about research integrity and publication ethics.
- 3. To understand indexing, citation databases and the usage of plagiarism tools.
- 4. At the end of the course the student will have awareness about the publication ethics and publication misconducts

	CO1	understand the philosophy of science and ethics, research integrity and publication ethics
	CO2	identify research misconduct and predatory publications
K1 - K5	соз	Know about indexing and citation databases, open access publications, research metrics (citations, h-index, impact Factor, etc.)
	CO4	Understand the usage of plagiarism tools
	CO5	Gain knowledge on the publication ethics and publication misconducts

Subject Code: 22PPH3X1

Programme: 03			M.Sc. Physics	
Title of the Paper		EDC - Biomedical Instrumentation		
Batch	Semester	Hours/Week	Total Hours	Credits
2022-2023	3	2	30	2

Course Objective

To enable the learners to

- 1. Gain knowledge on bioelectric signals and transducers
- 2. Understand blood gas analyzers, pulmonary function analyzers and Oximeters
- 3. Understand the modern imaging systems and electrical safety

Course outcome (CO)

	CO1	Gain knowledge on bioelectric signals and transducers
	CO2	Understand Blood gas analyzers, pulmonary function analyzers and
K1 to K5	CO2	Oximeters
	CO3	Acquire knowledge on blood cell counters and audiometer
	CO4 Acquire knowledge on bio-medical recorders	
	CO5	Gain knowledge on modern imaging systems and electrical safety

Programme: 03	M.Sc. Physics
Title of the Paper	ALC - Advanced Experimental Techniques
Batch	2022-2023
Extra Credits	2

Course Objective

To enable the learners to

- 1. Understand different types of structural and surface morphological and spectroscopic characterization techniques
- 2. Gain knowledge about magnetic techniques
- 3. Understand thermal analytical techniques

	CO1	Gain knowledge on structural characterization
CO2	Acquire knowledge on spectroscopic analysis	
K1 to K5	CO3	Gain knowledge on morphological techniques
KI to KS	CO4	Acquire knowledge on magnetic properties of materials
	CO5	Gain knowledge on thermal analytical techniques