# KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) COIMBATORE - 641029



# **DEPARTMENT OF PHYSICS (PG)**

**Course Outcome** (2024-2025)

### PPH

Sub. Code: 24PPH101

| Programme          | e code : 03 |                                    | M.Sc.             | Physics      |                   |
|--------------------|-------------|------------------------------------|-------------------|--------------|-------------------|
| Title of the Paper |             | Core Paper 1 – Classical Mechanics |                   |              | hanics            |
| Batch<br>2024-2025 | Semester 1  | Hours/Week<br>5                    | Total Hours<br>75 | Credits<br>4 | Skill Development |

# **Course Objectives**

To enable the learners to know about the

- 1. Mechanics of single and system of particle
- 2. Generalized coordinates, Lagrangian formulation and mechanics of rigid body motion
- 3. Hamiltonian formulation of mechanics, Hamilton-Jacobi theory, harmonic oscillator problem, theory and applications of small oscillations.

### Course outcomes (CO)

|          | 1   | ,                                                        |  |  |  |
|----------|-----|----------------------------------------------------------|--|--|--|
|          | CO1 | Know about Newtonian mechanics                           |  |  |  |
|          | CO2 | Gain knowledge about Lagrangian formulation              |  |  |  |
| K1 to K5 | CO3 | Acquire knowledge about mechanics of rigid body motion.  |  |  |  |
|          | CO4 | Know about Hamiltonian formulation                       |  |  |  |
|          | CO5 | Understand Hamilton-Jacobi theory and small oscillations |  |  |  |

| Programme code : 03 |          | M.Sc. Physics                       |             |         |                   |
|---------------------|----------|-------------------------------------|-------------|---------|-------------------|
| Title of th         | ne Paper | Core Paper 2 - Mathematical Physics |             |         |                   |
| Batch               | Semester | Hours/Week                          | Total Hours | Credits | Skill Development |
| 2024-2025           | 1        | 5                                   | 75          | 4       | _                 |

# **Course Objectives**

To enable the learners to

- 1. Understand complex variables, group theory & tensors
- 2. Know about types of differential equations in Physics
- 3. Study about numerical methods

### **Course Outcomes (CO)**

|          |     | Understanding of complex analysis including important theorems    |
|----------|-----|-------------------------------------------------------------------|
|          | CO1 | and determination of residues to evaluate definite integrals      |
|          | CO2 | Solve partial differential equations and be familiar with special |
| K1 to K5 | 002 | functions such as Bessel, Legendre and Hermite                    |
|          | CO3 | Have knowledge in abstract group theory and tensors               |
| CO4      |     | Understand partial differential equations in Physics              |
|          | CO5 | Apply numerical methods to obtain appropriate solutions to        |
|          |     | mathematical problems                                             |

| Programme cod      | le: 03        | M.Sc. Physics                             |                   |           |                   |
|--------------------|---------------|-------------------------------------------|-------------------|-----------|-------------------|
| Title of the Paper |               | Core Paper 3 – Condensed Matter Physics I |                   |           |                   |
| Batch 2024-2025    | Semester<br>1 | Hours/Week<br>5                           | Total Hours<br>75 | Credits 4 | Skill Development |

# **Course Objectives**

To enable the learners to

- 1. Understand the crystal system of materials
- 2. Know about crystal imperfection and lattice vibrations
- 3. Study about lattice and electronic specific heat

### **Course Outcomes (CO)**

|          | CO1 | Understand the crystal structure and reciprocal lattice        |  |
|----------|-----|----------------------------------------------------------------|--|
|          | CO2 | Understand the crystal structure by XRD                        |  |
| K1 to K5 | CO3 | Gain knowledge about crystal imperfection                      |  |
|          | CO4 | Acquire knowledge on lattice vibrations and thermal properties |  |
|          | CO5 | Acquire knowledge about lattice and electronic specific heat   |  |

| Programme code : 03 |            | M.Sc. Physics                      |                   |           |                   |
|---------------------|------------|------------------------------------|-------------------|-----------|-------------------|
| Title of the Paper  |            | Core Paper 4 – Quantum Mechanics I |                   |           | hanics I          |
| Batch<br>2024-2025  | Semester 2 | Hours/Week<br>5                    | Total Hours<br>75 | Credits 4 | Skill Development |

### **Course Objectives**

### Enable the learners to

- 1. Gain knowledge on General formalism of quantum mechanics
- 2. Gain knowledge on energy Eigenvalue problems, angular momentum and approximation methods
- 3. Understand time dependent, time independent and perturbation theories.

### **Course Outcomes (CO)**

| successiul con | присион                                                 | for the course, the students will be able to                      |  |  |  |
|----------------|---------------------------------------------------------|-------------------------------------------------------------------|--|--|--|
|                | CO1 Knowledge on General formalism of quantum mechanics |                                                                   |  |  |  |
|                | CO2                                                     | Knowledge on one and three dimensional energy Eigenvalue problems |  |  |  |
|                | CO3                                                     | Knowledge on three-dimensional energy Eigenvalue problems and     |  |  |  |
| K1 to K5       |                                                         | angular momentum concepts                                         |  |  |  |
|                | CO4                                                     | Acquire knowledge on time independent quantum approximation       |  |  |  |
|                | CO4                                                     | Methods                                                           |  |  |  |
|                | CO5                                                     | Understand time dependent perturbation theory and semi-classical  |  |  |  |
|                | COS                                                     | treatment of radiation                                            |  |  |  |

| Programme          | code: 03 | M.Sc. Physics |                                                         |   |  |  |  |
|--------------------|----------|---------------|---------------------------------------------------------|---|--|--|--|
| Title of the Paper |          | Core Pa       | Core Paper 5 - Thermodynamics and Statistical Mechanics |   |  |  |  |
| Batch              | Semester | Hours/Week    | Iours/Week Total Hours Credits Employability            |   |  |  |  |
| 2024-2025          | 2        | 5             | <b>75</b>                                               | 4 |  |  |  |
|                    |          |               |                                                         |   |  |  |  |

# **Course Objectives**

To enable the learner to know about

- 1. Thermodynamics and ensembles
- 2. Classical distribution law and quantum statistics
- 3. Application of quantum statistics.

### **Course Outcomes (CO)**

|          | CO1 Know about thermodynamics and radiations |                                                |  |  |
|----------|----------------------------------------------|------------------------------------------------|--|--|
|          | CO2                                          | Acquire knowledge on ensembles                 |  |  |
| K1 to K5 | CO3                                          | Get knowledge about classical distribution law |  |  |
|          | CO4                                          | Get knowledge about quantum statistics         |  |  |
|          | CO5                                          | Understand applications of quantum statistics  |  |  |

| Programme code     | e: 03    |              | M.Sc. P               | hysics     |               |
|--------------------|----------|--------------|-----------------------|------------|---------------|
| Title of the Paper | r        | Core Paper-6 | <b>Electronics ar</b> | nd Micropr | ocessor       |
| Batch              | Semester | Hours/Week   | <b>Total Hours</b>    | Credits    | Employability |
| 2024-2025          | 2        | 5            | 75                    | 4          |               |

### **Course Objectives**

To enable the learners to

- 1. Know about power electronics, operational amplifiers and non-linear integrated circuits
- 2. Understand architecture of microprocessors
- 3. Know about peripheral devices, interfacing and data acquisition systems.

### **Course Outcomes (CO)**

|          | CO1                                               | Understand power electronics                                                |
|----------|---------------------------------------------------|-----------------------------------------------------------------------------|
| K1 to K5 | CO2                                               | Gain knowledge on operational amplifiers and non-linear integrated circuits |
|          | CO3                                               | Understand architecture of microprocessors                                  |
|          | CO4 Know about peripheral devices and interfacing |                                                                             |
|          | CO5                                               | Know about data acquisition systems                                         |

| Programme: 03      | }          | M.Sc. Physics                       |                   |           |                   |
|--------------------|------------|-------------------------------------|-------------------|-----------|-------------------|
| Title of the Paper |            | Core Paper 7 - Quantum Mechanics II |                   |           |                   |
| Batch 2024-2025    | Semester 3 | Hours/Week<br>5                     | Total Hours<br>75 | Credits 4 | Skill Development |

# **Course Objectives**

To enable the learners to

- 1. Understand the basic approximate methods in molecular quantum mechanics
- 2. Understand relativistic quantum theory, quantum optics
- 3. Understand quantization of fields and scattering

### **Course Outcomes (CO)**

| COI      |                                                              | Understand different approximations and models to describe a many electron system                     |
|----------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| K1 to K5 | CO2                                                          | Comparison of MO and VB theories to explain molecular structure of hydrogen molecule and hydrogen ion |
| CO3      |                                                              | Understand relativistic quantum mechanics                                                             |
|          | CO4 Acquire knowledge on quantum field theory                |                                                                                                       |
|          | CO5 Interpret scattering theory in terms of quantum aspects. |                                                                                                       |

| Programm           | e: 03    | M.Sc. Physics  |                    |           |                   |
|--------------------|----------|----------------|--------------------|-----------|-------------------|
| Title of the Paper |          | Core Paper 8 – |                    |           |                   |
|                    |          | Electrom       | agnetic Theor      | y and Ele | ectrodynamics     |
| Batch              | Semester | Hours/Week     | <b>Total Hours</b> | Credits   | Skill Development |
| 2024-2025          | 3        | 5              | 75                 | 4         |                   |

# **Course Objectives**

### To know about

- 1. Electrostatics and magnetostatics
- 2. Applications of Maxwell's equations
- 3. Antenna arrays

### **Course Outcomes (CO)**

| decembrar com | tessial completion of the course, the stadents will be delete |                                                                                             |  |  |  |
|---------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
|               | CO1                                                           | Understand electrostatics and magnetostatics                                                |  |  |  |
|               | CO2                                                           | Acquire knowledge on field equations and conservation laws                                  |  |  |  |
| K1 to K5      | CO3                                                           | Understand the propagation of electromagnetic waves in different media on microscopic scale |  |  |  |
|               | CO4                                                           | Study the interaction of electromagnetic waves with different media on macroscopic scale    |  |  |  |
|               |                                                               |                                                                                             |  |  |  |
|               | CO5                                                           | Acquire knowledge on relativistic electrodynamics                                           |  |  |  |

| Programme: 03      |          | M.Sc. Physics                              |                    |         |                   |
|--------------------|----------|--------------------------------------------|--------------------|---------|-------------------|
| Title of the Paper |          | Core Paper 9 – Condensed Matter Physics II |                    |         |                   |
| Batch              | Semester | Hours/Week                                 | <b>Total Hours</b> | Credits | Skill Development |
| 2024-2025          | 3        | 4                                          | 60                 | 4       |                   |

# **Course Objectives**

To gain knowledge about

- 1. Band theory of solids
- 2. Semiconductors, dielectrics and ferroelectrics
- 3. Magnetism and superconductors

### **Course Outcomes (CO)**

|          | CO1                                                           | Knowledge on band theory of solids   |  |  |
|----------|---------------------------------------------------------------|--------------------------------------|--|--|
|          | CO2 Understand semiconductors                                 |                                      |  |  |
| K1 to K5 | CO3                                                           | Acquire knowledge on superconductors |  |  |
|          | CO4 Gain knowledge on dielectrics and ferroelectric materials |                                      |  |  |
|          | CO5                                                           | Acquire knowledge on magnetism       |  |  |

| Programme          | :: 03    | M.Sc. Physics                          |                    |         |                   |
|--------------------|----------|----------------------------------------|--------------------|---------|-------------------|
| Title of the Paper |          | Core Paper 10 - Problems in Physics II |                    |         |                   |
| Batch              | Semester | Hours/Week                             | <b>Total Hours</b> | Credits | Skill Development |
| 2024-2025          | 4        | 5                                      | 75                 | 4       |                   |

# **Course Objectives**

To enable the learners to

- 1. Acquire knowledge and skills to solve problem through the concept behind physics
- 2. Apply creative thinking techniques towards realistic problem
- 3. Visualize the basic concepts clearly

### **Course outcomes (CO)**

| successful completion of the course, the students will be use to |                                                                             |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
|                                                                  | Understand and solve problems in classical mechanics                        |  |  |  |
|                                                                  | Understand and solve problems in quantum mechanics                          |  |  |  |
| K1 to K5                                                         | Understand and solve problems in electromagnetics                           |  |  |  |
|                                                                  | Understand and solve problems in electronics                                |  |  |  |
|                                                                  | CO5 Understand and solve problems in thermodynamics and statistical Physics |  |  |  |

| Programme                 | : 03     | M.Sc. Physics                                     |                    |         |                   |
|---------------------------|----------|---------------------------------------------------|--------------------|---------|-------------------|
| <b>Fitle of the Paper</b> |          | Core Paper 11 - Atomic and Molecular Spectroscopy |                    |         |                   |
| Batch                     | Semester | Hours/Week                                        | <b>Total Hours</b> | Credits | Skill Development |
| 2024-2025                 | 4        | 5                                                 | 75                 | 4       |                   |

### **Course Objectives**

To enable the learners to

- 1. Understand atomic, microwave and IR spectroscopy
- 2. Know about Raman, NMR and NQR spectroscopy
- 3. Know about ESR and Mossbauer spectroscopy

### **Course Outcomes (CO)**

| successial completion of the course, the students will be use to |                                         |                                                     |  |  |  |
|------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|--|--|--|
|                                                                  | CO1                                     | CO1 Understand atomic spectroscopy                  |  |  |  |
| TZ1 4 . TZ5                                                      | CO2                                     | Gain knowledge on microwave and IR spectroscopy     |  |  |  |
| K1 to K5                                                         | CO3                                     | Acquire knowledge on Raman spectroscopy             |  |  |  |
|                                                                  | CO4 Understand NMR and NQR spectroscopy |                                                     |  |  |  |
|                                                                  | CO5                                     | Acquire knowledge on ESR and Mossbauer spectroscopy |  |  |  |

| Programme: 03      |               | M.Sc. Physics                                |                   |           |                   |
|--------------------|---------------|----------------------------------------------|-------------------|-----------|-------------------|
| Title of the Paper |               | Core Paper 12 - Nuclear and Particle Physics |                   |           | article Physics   |
| Batch 2024-2025    | Semester<br>4 | Hours/Week<br>5                              | Total Hours<br>75 | Credits 4 | Skill Development |

# **Course Objectives**

To enable the learners to

- 1. Know about radioactivity
- 2. Gain knowledge on Alpha and Beta particles and Gamma rays
- 3. Understand nuclear models and particle Physics

### **Course Outcomes (CO)**

| saccessial complete | ······································ |                                                    |  |  |
|---------------------|----------------------------------------|----------------------------------------------------|--|--|
|                     | CO1                                    | Study the phenomenon of radioactivity              |  |  |
|                     | CO2                                    | Understand Alpha and Beta particles and Gamma rays |  |  |
| K1 to K5            | CO3                                    | Gain knowledge on nuclear properties               |  |  |
|                     | CO4                                    | Acquire knowledge on nuclear models                |  |  |
|                     | CO5                                    | Gain knowledge on elementary particles             |  |  |

| Programme          | : 03      | M.Sc. Physics                          |                    |         |                   |
|--------------------|-----------|----------------------------------------|--------------------|---------|-------------------|
| Title of the Paper |           | Core Practical 1 – General Experiments |                    |         |                   |
| Batch              | Semesters | Hours/Week                             | <b>Total Hours</b> | Credits | Skill Development |
| 2024-2025          | 1 & 2     | 5                                      | 150                | 5       |                   |

# **Course Objectives**

To enable the learners to

- 1. Perform experiments in the field of general Physics
- 2. Explain physical phenomena and enable to relate physical laws and their applications
- 3. Apply standard techniques and analyze the experimental results and output.

### **Course outcomes (CO)**

|          | CO1 | Have a foundation in fundamentals and applications of general Physics |
|----------|-----|-----------------------------------------------------------------------|
|          | CO2 | Able to design, carry out record and analyze experimental data.       |
| K3,K4,K5 | CO3 | Provide hands on experiences in conducting laboratory experiments.    |
|          | CO4 | Understand the relationship between theory and experimental results.  |
|          | CO5 | Practice record keeping of experimental work and data graphing.       |

| Programme          | : 03      | M.Sc. Physics                              |                    |         |                   |
|--------------------|-----------|--------------------------------------------|--------------------|---------|-------------------|
| Title of the Paper |           | Core Practical 2 – Electronics Experiments |                    |         |                   |
| Batch              | Semesters | Hours/Week                                 | <b>Total Hours</b> | Credits | Skill Development |
| 2024-2025          | 1 & 2     | 5                                          | 150                | 4       |                   |

# **Course Objectives**

To enable the learners to

- 1. Design and construct electronic circuits
- 2. Develop experimental skills and understand relation between experimental data and theoretical analysis.
- 3. Have a foundation in the fundamentals and applications of experimental Physics.

### Course outcomes (CO)

|          | CO1 | Acquire a basic knowledge in solid state electronics                                               |
|----------|-----|----------------------------------------------------------------------------------------------------|
|          | CO2 | Analyse and design analog electronic circuits using discrete components.                           |
| K3,K4,K5 | CO3 | Observe the amplitude / frequency response of amplifiers.                                          |
|          | CO4 | Take measurements to compare experimental results in the laboratory with the theoretical analysis. |
|          | CO5 | Practice record keeping of experimental work and data graphing.                                    |

| Programme: 03      |                 | M.Sc. Physics                           |                    |           |                   |
|--------------------|-----------------|-----------------------------------------|--------------------|-----------|-------------------|
| Title of the Paper |                 | Core Practical 3 – Advanced Experiments |                    |           |                   |
| Batch<br>2024-2025 | Semesters 3 & 4 | Hours/Week<br>5                         | Total Hours<br>150 | Credits 5 | Skill Development |

# Course Objectives

To enable the learners to

- 1. Perform experiments in the field of advanced Physics and interpret the results.
- 2. Explain physical phenomena and enable to estimate various related parameters and to analyze them.
- 3. Apply the experimental techniques to research level.

### **Course outcomes (CO)**

|          | 1   | ,                                                                    |
|----------|-----|----------------------------------------------------------------------|
|          | CO1 | Gain fundamental knowledge on applications of advanced Physics.      |
|          | CO2 | Understand the relationship between theory and experiments           |
| K3,K4,K5 | CO3 | Provide hands on experiences in conducting scientific investigations |
|          | CO4 | Provide hands on experiences in conducting laboratory experiments.   |
|          | CO5 | Recording and analyzing experimental data.                           |

| Programme          | : 03            | M.Sc. Physics                                      |                    |           |                   |  |
|--------------------|-----------------|----------------------------------------------------|--------------------|-----------|-------------------|--|
| Title of the Paper |                 | Core Practical 4 – Special Electronics Experiments |                    |           |                   |  |
| Batch 2024-2025    | Semesters 3 & 4 | Hours/Week<br>5                                    | Total Hours<br>150 | Credits 4 | Skill Development |  |

**Course Objectives** 

To enable the learners to

- 1. Design and construct special electronic circuits
- 2. Develop experimental skills and understand relation between experimental data and theoretical analysis.
- 3. Have a foundation in the fundamentals and applications of experimental Physics.

### **Course outcomes (CO)**

|          | CO1 | Acquire knowledge in solid state electronics                                    |
|----------|-----|---------------------------------------------------------------------------------|
|          | CO2 | Develop the ability to construct electronic circuits using discrete components. |
| K3,K4,K5 | CO3 | Acquire knowledge to construct Op. amp based circuits                           |
|          | CO4 | Acquire knowledge to construct microprocessor based circuits                    |
|          | CO5 | Understand the relation between theory and experiments                          |

| Programme: 03      |               | M.Sc. Physics         |                   |           |                   |
|--------------------|---------------|-----------------------|-------------------|-----------|-------------------|
| Title of the Paper |               | Project and Viva Voce |                   |           |                   |
| Batch 2024-2025    | Semester<br>4 | Hours/Week<br>1       | Total Hours<br>15 | Credits 4 | Skill Development |

### **Course objectives**

To enable the learners to

- 1. Have foundations in the fundamentals of Physics and related area.
- 2. Acquire skills to develop a working model
- 3. Visualize the applications of theoretical concepts

### **Course Outcomes (CO)**

|          | CO1 | Construct working models                                      |
|----------|-----|---------------------------------------------------------------|
|          | CO2 | Gain expertise to present the idea systematically through PPT |
| K3 to K5 | CO3 | Get familiarized to develop a report on the project work      |
|          | CO4 | Accomplish the result accumulation and data graphing          |
|          | CO5 | Gain expertise to apply knowledge on multiciliary field       |

| Programme: 03      |            | M.Sc. Physics                                                |         |                  |  |
|--------------------|------------|--------------------------------------------------------------|---------|------------------|--|
| Title of the Paper |            | Major Elective Paper - Thin Film Physics, Plasma Physics and |         |                  |  |
|                    |            | Crystal Growth                                               |         |                  |  |
| Batch              | Hours/Week | Total Hours                                                  | Credits | Entrepreneurship |  |
| 2024-2025          | 5          | 75                                                           | 5       | <b>-</b>         |  |

To enable the learners to

- 1. Understand the preparation and characterization of thin films
- 2. Understand the fundamentals of plasma Physics
- 3. Acquire knowledge about crystal growth techniques

### **Course outcomes (CO)**

|          | CO1 | Understand the principles, advantages and disadvantages of different thin film deposition methods |
|----------|-----|---------------------------------------------------------------------------------------------------|
| K1 to K5 | CO2 | Understand the growth mechanism of thin films                                                     |
|          | CO3 | Understand the fundamentals of plasma                                                             |
|          | CO4 | Can distinguish single particle approach and fluid approach                                       |
|          | CO5 | Understand different crystal growth techniques                                                    |

| Programme: 03      |   | M.Sc. Physics                                |         |                  |  |
|--------------------|---|----------------------------------------------|---------|------------------|--|
| Title of the Paper |   | Major Elective Paper - Communication Physics |         |                  |  |
| Batch Hours/Week   |   | <b>Total Hours</b>                           | Credits | Entrepreneurship |  |
| 2024-2025          | 5 | 75                                           | 5       |                  |  |

To enable the learners to

- 1. Understand various modulation and detection techniques
- 2. Acquire knowledge about antennas and wave propagation
- 3. Understand generation and propagation of microwaves
- 4. Acquire knowledge on radar and communication electronics

### **Course Outcomes (CO)**

|          | CO1 Understand the concept of modulation and demodulation |                                                              |  |  |  |  |
|----------|-----------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|
|          |                                                           | O2 Understand the principle of antennas and wave propagation |  |  |  |  |
| K1 to K5 | CO3                                                       | Knowledge on television and radar                            |  |  |  |  |
|          | CO4                                                       | Acquire knowledge on communication electronics               |  |  |  |  |
|          | CO5                                                       | Understand microwave generation                              |  |  |  |  |

### **PPH**

| Programme: 03      |            | M.Sc. Physics                         |         |                  |  |
|--------------------|------------|---------------------------------------|---------|------------------|--|
| Title of the Paper |            | Major Elective Paper - Energy Physics |         |                  |  |
| Batch              | Hours/Week | Total Hours                           | Credits | Entrepreneurship |  |
| 2024-2025          | 5          | <b>75</b>                             | 5       |                  |  |

# **Course Objectives**

To enable the learners to

- 1. Know about Solar thermal and photovoltaic energy
- 2. Understand hydrogen energy, wind energy and ocean thermal energy
- 3. Understand energy auditing and carbon credits.

### **Course Outcomes (CO)**

|          | 1   | ,                                             |  |
|----------|-----|-----------------------------------------------|--|
|          | CO1 | Understand Solar thermal energy               |  |
|          | CO2 | Gain knowledge on solar photovoltaic energy   |  |
| K1 to K5 | CO3 | CO3 Understand wind and ocean thermal energy  |  |
|          | CO4 | Know about Hydrogen energy and Fuel cells     |  |
|          | CO5 | Understand energy auditing and carbon credits |  |

| Programme code : 03 |            |             | M.Sc. Physics                             |         |                  |
|---------------------|------------|-------------|-------------------------------------------|---------|------------------|
| Title of the Paper  |            |             | Major Elective Paper - Industrial Physics |         |                  |
| Batch               | Hours/Week | Total Hours |                                           | Credits | Entrepreneurship |
| 2024-2025           | 5          | ,           | 75                                        | 5       |                  |

To enable the learners to

- 1. Understand power electronic devices
- 2. Understand voltage regulators, switching and counting circuits
- 3. Understand industrial heating system and production of vaccum

### **Course Outcomes (CO)**

|           | Understand power electronic devices      |                                                   |  |  |  |
|-----------|------------------------------------------|---------------------------------------------------|--|--|--|
| T74 / T75 | CO2 Understand voltage regulators        |                                                   |  |  |  |
| K1 to K5  | CO3                                      | Gain knowledge on switching and counting circuits |  |  |  |
|           | CO4 Know about industrial heating system |                                                   |  |  |  |
|           | CO 5                                     | Acquire knowledge on production of vacuum         |  |  |  |

| Programme code: 03 | M.Sc. Physics                                |                   |              |                   |
|--------------------|----------------------------------------------|-------------------|--------------|-------------------|
| Title of the Paper | Major Elective Paper – Problems in Physics I |                   |              |                   |
| Batch<br>2024-2025 | Hours/Week<br>5                              | Total Hours<br>75 | Credits<br>5 | Skill Development |

To enable the learners to

- 1. Acquire knowledge and skills to solve problem through the concept behind physics
- 2. Apply creative thinking techniques towards realistic problem
- 3. Visualize the basic concepts clearly

### **Course Outcomes (CO)**

|          | CO1                                                                       | Understand and solve problems in mathematical methods in physics |  |  |
|----------|---------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
| K1 to K5 | CO2 Understand and solve problems in experimental techniques and analysis |                                                                  |  |  |
|          | CO3                                                                       | Understand and solve problems in atomic and molecular physics    |  |  |
|          | CO4                                                                       | Understand and solve problems in condensed matter physics        |  |  |
|          | CO 5                                                                      | Understand and solve problems in nuclear and particle physics    |  |  |

| Programme code : 03 | M.Sc. Physics                                |                   |           |               |  |
|---------------------|----------------------------------------------|-------------------|-----------|---------------|--|
| Title of the Paper  | Major Elective Paper - Semiconductor Devices |                   |           |               |  |
| Batch<br>2024-2025  | Hours/Week<br>5                              | Total Hours<br>75 | Credits 5 | Employability |  |

To enable the learners to

- 1. Impart knowledge on application of semiconducting materials
- 2. Understand the photolithography and etching processes
- 3. Impart knowledge on IC manufacturing

# **Course Outcomes (CO)**

|          | CO1  | Understand silicon oxidation process          |
|----------|------|-----------------------------------------------|
|          | CO2  | Understand photolithography                   |
| K1 to K5 | CO3  | Gain knowledge on different etching processes |
|          | CO4  | Know about ion implantation                   |
|          | CO 5 | Acquire knowledge on production of ICs        |

| Title of the Paper | Major      | Elective Paper | - Photovo | oltaic Science   |
|--------------------|------------|----------------|-----------|------------------|
| Batch              | Hours/Week | Total Hours    | Credits   | Entrepreneurship |
| 2024-2025          | 5          | 75             | 5         |                  |

To enable the learners to

- 1. Understand the science behind photovoltaics
- 2. Understand he classification of solar cells
- 3. Understand the characterization of silicon and dye sensitized solar cells

# **Course Outcomes (CO)**

|             | CO1                                                           | Explain Photovoltaic and solar cell                                |  |  |  |
|-------------|---------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| TZ1 4 . TZ5 | Understand the basics about semiconductors                    |                                                                    |  |  |  |
| K1 to K5    | CO3 Classification of amorphous silicon solar cell            |                                                                    |  |  |  |
|             | CO4 Construction and working of solar cells and Thin methods. |                                                                    |  |  |  |
|             | CO 5                                                          | Know about preparation and mechanism of dye sensitized solar cell. |  |  |  |

| Programme code: 03 |              | M.Sc. Physics                        |                   |           |               |
|--------------------|--------------|--------------------------------------|-------------------|-----------|---------------|
| Title of the Paper |              | Major Elective Paper – Modern Optics |                   |           |               |
| Batch 2024-2025    | Semester 1/2 | Hours/Week<br>5                      | Total Hours<br>75 | Credits 5 | Employability |

To enable the learners to

- 1. Understanding necessary and sufficient condition for laser
- 2. Understanding basic principles involved in Non-linear optical effects
- 3. Understanding different types of optical fibers and its applications

# **Course Outcomes (CO)**

|                             | CO1  | Understand polarization and optics of solids                |  |
|-----------------------------|------|-------------------------------------------------------------|--|
| CO2 Understand laser action |      |                                                             |  |
| K1                          | CO3  | Gain knowledge about non-linear optics and its applications |  |
| to<br>K5                    | CO4  | Know about construction of optical fibers                   |  |
|                             | CO 5 | Acquire knowledge on applications of optical fibers         |  |

| Programme: 03      | M.Sc. Physics              |                  |             |                     |  |
|--------------------|----------------------------|------------------|-------------|---------------------|--|
| Title of the Paper | Non Major Elective Paper – |                  |             |                     |  |
| _                  | Nano                       | technology: Prin | nciples and | <b>Applications</b> |  |
| Batch              | Hours/Week                 | Total Hours      | Credits     | Entrepreneurship    |  |
| 2024-2025          | 4                          | 60               | 4           |                     |  |
|                    |                            |                  |             |                     |  |

To enable the learners to

- 1. Understand the concepts in nanomaterials
- 2. know about different synthesis processes of nanomaterials
- 3. know about characterization techniques and applications of nanomaterials

# **Course Outcomes (CO)**

|          | CO1 | Understand the concepts in nanomaterials                          |  |  |  |
|----------|-----|-------------------------------------------------------------------|--|--|--|
| V1 to V5 | CO2 | Know the synthesis methods of 0-D, 1-D, 2-D and 3-D nanomaterials |  |  |  |
| KI to KS | CO3 | Know the various characterization methods                         |  |  |  |
|          | CO4 | Gain knowledge on properties of nanomaterials                     |  |  |  |
|          | CO5 | Understand the applications of nanomaterials                      |  |  |  |

| Programme code: 03 | M.Sc. Physics    |                 |            |                  |
|--------------------|------------------|-----------------|------------|------------------|
| Title of the Paper | Non Major Electi | ve Paper - Inte | llectual F | Property Rights  |
| Batch              | Hours/Week       | Total Hours     | Credits    | Entrepreneurship |
| 2024-2025          | 4                | 60              | 4          |                  |

To enable the learners to

- 1. Understand the aspects of Intellectual Property Rights
- 2. Know about Patents, Copyrights, Trademarks and Registration aspects
- 3. Know about Design and Geographical Indication of IPR

# Course outcomes (CO)

|          | CO1 | Acquire knowledge about Intellectual Property Rights     |  |  |  |
|----------|-----|----------------------------------------------------------|--|--|--|
|          |     | Understand about patents and patent registration         |  |  |  |
| K1 to K5 | CO3 | Acquire knowledge on copyrights and registration         |  |  |  |
|          | CO4 | Gain knowledge on trademarks and registration            |  |  |  |
|          | CO5 | Understand the design and geographical indication of IPR |  |  |  |

| Programme Code: 03 | M.Sc. Physics   |                   |                                  |                   |  |
|--------------------|-----------------|-------------------|----------------------------------|-------------------|--|
| Title of the Paper | Non 1           | Major Elective P  | Elective Paper - Research Ethics |                   |  |
| Batch<br>2024-2025 | Hours/Week<br>4 | Total Hours<br>60 | Credits<br>4                     | Skill Development |  |

### To enable the learners

- 1. To understand the philosophy of science and ethics,
- 2. To know about research integrity and publication ethics.
- 3. To understand indexing, citation databases and the usage of plagiarism tools.
- 4. At the end of the course the student will have awareness about the publication ethics and publication misconducts

### **Course Outcomes (CO)**

|         | CO1 | understand the philosophy of science and ethics, research integrity and publicationethics                                       |  |  |  |
|---------|-----|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | CO2 | identify research misconduct and predatory publications                                                                         |  |  |  |
| K1 - K5 | СОЗ | Know about indexing and citation databases, open access publications, research metrics(citations, h-index, impact Factor, etc.) |  |  |  |
|         | CO4 | Understand the usage of plagiarism tools                                                                                        |  |  |  |
|         | CO5 | Gain knowledge on the publication ethics and publication misconducts                                                            |  |  |  |

**Subject Code: 24PGI4N2** 

| Programme          | Code: 03      | M.Sc Physics                                   |                      |           |                   |
|--------------------|---------------|------------------------------------------------|----------------------|-----------|-------------------|
| Title of the Paper |               | Non-Major Elective Paper: Information Security |                      |           |                   |
| Batch<br>2024-2025 | Semester<br>4 | Hours/Week<br>4                                | Total<br>Hours<br>60 | Credits 4 | Skill Development |

### **Course Objectives**

- 1. Students will identify the core concepts of Information security.
- 2. To examine the concepts of Information Security.
- 3. To design and implement the security features for IT and Industrial sectors.

### **Course Outcomes (CO)**

|         | CO1 | To Learn the principles and fundamentals of information security.       |
|---------|-----|-------------------------------------------------------------------------|
|         | CO2 | To Demonstrate the knowledge of Information security concepts           |
| K1 – K5 | CO3 | To Understand about Information Security Architecture.                  |
|         | CO4 | To Analyze the various streams of security in IT and Industrial sector. |
|         | CO5 | To know about Cyber Laws and Regulations.                               |

**Subject Code: 24PPH3X1** 

| Programmo          | e: 03 | M.Sc. Physics                    |                   |           |               |
|--------------------|-------|----------------------------------|-------------------|-----------|---------------|
| Title of the Paper |       | EDC - Biomedical Instrumentation |                   |           |               |
| Batch 2024-2025    |       | Hours/Week<br>2                  | Total Hours<br>30 | Credits 2 | Employability |

### **Course Objective**

To enable the learners to

- 1. Gain knowledge on bioelectric signals and transducers
- 2. Understand blood gas analyzers, pulmonary function analyzers and Oximeters
- 3. Understand the modern imaging systems and electrical safety

### Course outcome (CO)

|          | CO1 | Gain knowledge on bioelectric signals and transducers            |  |  |  |
|----------|-----|------------------------------------------------------------------|--|--|--|
|          | CO2 | Understand Blood gas analyzers, pulmonary function analyzers and |  |  |  |
| K1 to K5 | CO2 | Oximeters                                                        |  |  |  |
|          | CO3 | Acquire knowledge on blood cell counters and audiometer          |  |  |  |
|          | CO4 | CO4 Acquire knowledge on bio-medical recorders                   |  |  |  |
|          | CO5 | Gain knowledge on modern imaging systems and electrical safety   |  |  |  |

| Programme: 03      | M.Sc. Physics                          |
|--------------------|----------------------------------------|
| Title of the Paper | ALC - Advanced Experimental Techniques |
| Batch              | 2024-2025                              |
| Extra Credits      | 2                                      |

# To enable the learners to

- Understand different types of structural and surface morphological and spectrosed
   Gain knowledge about magnetic techniques
   Understand thermal analytical techniques

|          | CO1 | Gain knowledge on structural characterization         |
|----------|-----|-------------------------------------------------------|
|          | CO2 | Acquire knowledge on spectroscopic analysis           |
| K1 to K5 | CO3 | Gain knowledge on morphological techniques            |
| KI W KS  | CO4 | Acquire knowledge on magnetic properties of materials |
|          | CO5 | Gain knowledge on thermal analytical techniques       |

| Programme code: 03 |          | PG Diploma in Particle Accelerator |                    |         |               |
|--------------------|----------|------------------------------------|--------------------|---------|---------------|
| Title of the Paper |          | Core Paper 1 – Nuclear Physics     |                    |         | hysics        |
| Batch              | Semester | Hours/Week                         | <b>Total Hours</b> | Credits | Employability |
| 2024-2025          | 1        | 2                                  | 30                 | 2       |               |

# **Course Objectives**

To enable the learners to know about the

- 4. Basic properties of nucleus.
- 5. Various nuclear forces, nuclear models and nuclear reaction.
- 6. Different types of nuclear detectors.

|                                                          | CO1                                      | Know about basic properties of nucleus. |  |  |
|----------------------------------------------------------|------------------------------------------|-----------------------------------------|--|--|
|                                                          | CO2 Gain knowledge about nuclear forces. |                                         |  |  |
| K1 to K5                                                 | CO3                                      | Acquire knowledge about nuclear models. |  |  |
| CO4 Know about nuclear reactions.                        |                                          |                                         |  |  |
| CO5 Understand the working of various nuclear detectors. |                                          |                                         |  |  |

| Programme code    | e: 03    | PG Diploma in Particle Accelerator |                    |         |               |
|-------------------|----------|------------------------------------|--------------------|---------|---------------|
| Title of the Pape | r        | Core Paper 2 – Radioactivity       |                    |         |               |
| Batch             | Semester | Hours/Week                         | <b>Total Hours</b> | Credits | Employability |
| 2024-2025         | 1        | 2                                  | 30                 | 2       |               |

# **Course Objectives**

To enable the learners to know about the

- 1. Basics of radioactivity and its types.
- 2. Characteristics of alpha ( $\alpha$ ), beta ( $\beta$ ) and gamma ( $\gamma$ ) rays.
- 3. Fundamental laws of radioactivity.

|                                                        |     | · · ·                                             |  |  |  |
|--------------------------------------------------------|-----|---------------------------------------------------|--|--|--|
|                                                        | CO1 | Know about basics of radioactivity and its types. |  |  |  |
|                                                        | CO2 | Gain knowledge about alpha rays.                  |  |  |  |
| K1 to K5                                               | CO3 | Acquire knowledge about beta rays.                |  |  |  |
|                                                        | CO4 | Know about gamma rays.                            |  |  |  |
| CO5 Understand the fundamentals laws of radioactivity. |     |                                                   |  |  |  |

| Programme code     | e: 03    | PG Diploma in Particle Accelerator          |                    |         |               |
|--------------------|----------|---------------------------------------------|--------------------|---------|---------------|
| Title of the Paper | r        | Core Paper 3 – Charged Particle Interaction |                    |         | Interaction   |
| Batch              | Semester | Hours/Week                                  | <b>Total Hours</b> | Credits | Employability |
| 2024-2025          | 1        | 2                                           | 30                 | 2       |               |

To enable the learners to know about the

- 1. Basics of particle interaction.
- 2. Interaction of electromagnetic waves with matter.
- 3. Pair production.

|          | CO1                                                                | Know about basics of particle interaction.    |  |  |
|----------|--------------------------------------------------------------------|-----------------------------------------------|--|--|
|          | CO2 Gain knowledge about interaction of electromagnetic waves with |                                               |  |  |
| K1 to K5 | CO3                                                                | Acquire knowledge about photoelectric effect. |  |  |
|          | CO4                                                                | Know about Compton effect.                    |  |  |
|          | CO5                                                                | Understand pair production.                   |  |  |

| Programme code: 03 |          | PG Diploma in Particle Accelerator                    |                    |         |               |
|--------------------|----------|-------------------------------------------------------|--------------------|---------|---------------|
| Title of the Paper |          | Core Paper 4 – Physics of Basic Particle Accelerators |                    |         |               |
| Batch              | Semester | Hours/Week                                            | <b>Total Hours</b> | Credits | Employability |
| 2024-2025          | 2        | 2                                                     | 30                 | 2       |               |

To enable the learners to know about the

- 1. Importance of particle accelerators.
- 2. Various types of accelerators and their applications.
- 3. Working principles, limitations and applications of Cyclotron, Betatron, Synchrotron and Microtron.

|          | CO1 | Know about particle accelerators and its types.                |
|----------|-----|----------------------------------------------------------------|
|          | CO2 | Gain knowledge about RF linear accelerator.                    |
| K1 to K5 | CO3 | Acquire knowledge about linear accelerator designs and set up. |
|          | CO4 | Know about Cyclotron and Betatron.                             |
|          | CO5 | Understand Synchrotron and Microtron.                          |

| Programme code     | e: 03    | PG Diploma in Particle Accelerator                              |                    |         |               |
|--------------------|----------|-----------------------------------------------------------------|--------------------|---------|---------------|
| Title of the Paper | r        | <b>Core Paper 5 – Physics of Advanced Particle Accelerators</b> |                    |         |               |
| Batch              | Semester | Hours/Week                                                      | <b>Total Hours</b> | Credits | Employability |
| 2024-2025          | 2        | 2                                                               | 30                 | 2       |               |

To enable the learners to know about the

- Charged particle dynamics. 1.
- 2.
- Importance of advanced particle accelerators.

  Various types of advanced accelerators and their applications. 3.

|                                                   | CO1 | Know about charged particle dynamics.                         |  |
|---------------------------------------------------|-----|---------------------------------------------------------------|--|
| CO2 Gain knowledge about RIB accelerator science. |     |                                                               |  |
| K1 to K5                                          | CO3 | Acquire knowledge about ion source for particle accelerators. |  |
|                                                   | CO4 | Know about synchrotron radiation.                             |  |
|                                                   | CO5 | Understand advance accelerators.                              |  |

|   | Programme code     | e: 03    | PG Diploma in Particle Accelerator  |                    |         |               |
|---|--------------------|----------|-------------------------------------|--------------------|---------|---------------|
| Ī | Title of the Paper |          | Core Paper 6 – Elementary Particles |                    |         |               |
|   | Batch              | Semester | Hours/Week                          | <b>Total Hours</b> | Credits | Employability |
|   | 2024-2025          | 2        | 2                                   | 30                 | 2       |               |

To enable the learners to know about the

- 1. Fundamental interaction of elementary particles.
- 2. Various conservation laws of elementary particles.
- 3. Production and properties of various elementary particles.

|          | CO1 | Know about fundamental interaction of elementary particles.  |
|----------|-----|--------------------------------------------------------------|
|          | CO2 | Gain knowledge about various conservation laws.              |
| K1 to K5 | CO3 | Acquire knowledge about production and properties of various |
|          |     | elementary particles.                                        |
|          | CO4 | Know about mesons and its properties.                        |
|          | CO5 | Understand quarks and its properties.                        |

| Programme: 03      |                    |                       | M.Sc. Physics   |                   |           |                   |
|--------------------|--------------------|-----------------------|-----------------|-------------------|-----------|-------------------|
| Title of the Paper |                    | Project and Viva Voce |                 |                   |           |                   |
|                    | Batch<br>2024-2025 | Semester 2            | Hours/Week<br>2 | Total Hours<br>30 | Credits 2 | Skill Development |

# **Course objectives**

To enable the learners to

- 1. Have foundations in the fundamentals of Particle accelerators.
- 2. Acquire knowledge on elementary particles
- 3. Understand the applications of radioactive materials

### **Course Outcomes (CO)**

|                                                                            | CO1 | Construct working models                                      |
|----------------------------------------------------------------------------|-----|---------------------------------------------------------------|
| K3 to K5 CO2 Gain expertise to present the idea systematically through PPT |     | Gain expertise to present the idea systematically through PPT |
|                                                                            | CO3 | Get familiarized to develop a report on the project work      |
|                                                                            | CO4 | Accomplish the result accumulation and data graphing          |
|                                                                            | CO5 | Gain expertise to apply knowledge on multiciliary field       |