KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) COIMBATORE - 641029

DEPARTMENT OF PHYSICS (PG)

Course Outcome (2025-2026)

Programme	e code : 03	M.Sc. Physics			
Title of th	e Paper	Core Paper 1 – Classical Mechanics			echanics
Batch	Semester	Hours/Week	Total Hours	Credits	Skill Development
2025-2026	1	5	75	4	Skin Development

Course Objectives

To enable the learners to know about the

- 1. Mechanics of single and system of particle
- 2. Generalized coordinates, Lagrangian formulation and mechanics of rigid body motion
- 3. Hamiltonian formulation of mechanics, Hamilton-Jacobi theory, harmonic oscillator problem, theory and applications of small oscillations.

Course outcomes (CO)

	CO1	Know about Newtonian mechanics
CO2 Gain knowledge about Lagrangian formulation		Gain knowledge about Lagrangian formulation
K1 to K5	CO3	Acquire knowledge about mechanics of rigid body motion.
	CO4	Know about Hamiltonian formulation
	CO5	Understand Hamilton-Jacobi theory and small oscillations

Programm	e code : 03	M.Sc. Physics				
Title of tl	he Paper		Core Paper 2 - Mathematical Physics			
Batch	Semester	Hours/Week	Total Hours	Credits	Skill Development	
2025-2026	1	5	75	4	_	

Course Objectives

To enable the learners to

- 1. Understand complex variables, special functions
- 2. Know about types of differential equations in Physics
- 3. Study about group theory & tensors

Course Outcomes (CO)

	CO1	Understanding of complex analysis including important theorems and
	COI	determination of residues to evaluate definite integrals
	CO2	Solve partial differential equations and be familiar with special functions such
K1 to K5	CO2	as Bessel, Legendre and Hermite
	CO3	Have knowledge in abstract group theory
	CO4	Have introductory knowledge in tensors
	CO5	Understand partial differential equations in Physics

Programme code : 03		M.Sc. Physics			
Title of the Paper		Core Paper 3 – Condensed Matter Physics I			ter Physics I
Batch 2025-2026	Semester 1	Hours/Week 5	Total Hours 75	Credits 4	Skill Development

Course Objectives

To enable the learners to

- 1. Understand the crystal system of materials
- 2. Know about crystal imperfection and lattice vibrations
- 3. Study about lattice and electronic specific heat

Course Outcomes (CO)

	CO1	Understand the crystal structure and reciprocal lattice
	CO2	Understand the crystal structure by XRD
K1 to K5	CO3	Gain knowledge about crystal imperfection
	CO4	Acquire knowledge on lattice vibrations and thermal properties
	CO5	Acquire knowledge about lattice and electronic specific heat

Programme code	e: 03	M.Sc. Physics			
Title of the Paper		Core Paper 4 – Quantum Mechanics I			
Batch 2025-2026	Semester 2	Hours/Week 5 Total Hours Credits Skill Developme			

Course Objectives

To enable the learners to

- 1. Gain knowledge on General formalism of quantum mechanics
- 2. Gain knowledge on energy Eigenvalue problems, angular momentum and approximation methods3. Understand time dependent, time independent and perturbation theories.

Course Outcomes (CO)

	CO1	Gain knowledge on General formalism of quantum mechanics
	CO2	Attain knowledge on one and three dimensional energy Eigenvalue problems
	CO3	Acquire knowledge on three-dimensional energy Eigenvalue problems and
K1 - K5	COS	angular momentum concepts
	CO4	Acquire knowledge on time independent quantum approximation methods
	CO5	Understand time dependent perturbation theory and semi-classical treatment
	(03	of radiation

Programi	ne code : 03		M.Sc. Physics				
Title of the Paper		Core Pap	Core Paper 5 - Thermodynamics and Statistical Mechanics				
Batch	Semester	Hours/Week	Total Hours	Credits	Employability		
2025-2026	2	5	75	4			

Course Objectives

To enable the learner to know about

- 1. Thermodynamics and ensembles
- 2. Classical distribution law and quantum statistics
- 3. Application of quantum statistics.

Course Outcomes (CO)

	CO1	Know about thermodynamics and radiations
	CO2 Acquire knowledge on ensembles	
K1 to K5	CO3	Get knowledge about classical distribution law
	CO4	Get knowledge about quantum statistics
	CO5	Understand applications of quantum statistics

Programn	ne code : 03		M.Sc. P	hysics	
Title of the Paper		Core Paper-6 Electronics and Microprocessor			oprocessor
Batch	Semester	Hours/Week	Total Hours	Credits	Employability
2025-2026	2	5	75	4	

Course Objectives

To enable the learners to

- 1. Know about power electronics, operational amplifiers and non-linear integrated circuits
- 2. Understand architecture of microprocessors
- 3. Know about peripheral devices, interfacing and data acquisition systems.

Course Outcomes (CO)

	CO1	Understand power electronics
	CO2	Gain knowledge on operational amplifiers and non-linear integrated circuits
K1 to K5	CO3	Understand architecture of microprocessors
	CO4	Know about peripheral devices and interfacing
	CO5	Know about data acquisition systems

Programm	ne: 03		M.Sc. Pl	nysics	
Title of the Paper		Core Paper 7 - Quantum Mechanics II			nanics II
Batch 2025-2026	Semester 3	Hours/Week 5	Total Hours 75	Credits 4	Skill Development

Course Objectives

To enable the learners to

- 1. Understand the basic approximate methods in molecular quantum mechanics
- 2. Understand relativistic quantum theory, quantum optics
- 3. Understand quantization of fields and scattering

Course Outcomes (CO)

	CO1	Understand different approximations and models to describe a many electron system
K1 to K5	CO2	Comparison of MO and VB theories to explain molecular structure of hydrogen molecule and hydrogen ion
	CO3	Understand relativistic quantum mechanics
	CO4	Acquire knowledge on quantum field theory
	CO5	Interpret scattering theory in terms of quantum aspects.

Programme: 03			M.Sc. I	Physics	
Title of the Paper		Core Paper 8 – Electromagnetic Theory and Electrodynamics			
Batch 2025-2026	Semester 3	Hours/Week 5	Total Hours 75	Credits 4	Skill Development

Course Objectives

To enable the learners to know about

- 1. Electrostatics and magnetostatics
- 2. Applications of Maxwell's equations
- 3. Antenna arrays

Course Outcomes (CO)

	CO1	Understand electrostatics and magnetostatics
	CO2	Acquire knowledge on field equations and conservation laws
	CO3	Understand the propagation of electromagnetic waves in different
K1 to K5		media on microscopic scale
	CO4	Study the interaction of electromagnetic waves with different media
		on macroscopic scale
	CO5	Acquire knowledge on relativistic electrodynamics

Programme: 03			M.Sc. I	Physics	
Title of the Paper		Core Paper 9 – Condensed Matter Physics II			ter Physics II
Batch 2025-2026	Semester 3	Hours/Week 4	Total Hours 60	Credits 4	Skill Development

Course Objectives

To gain knowledge about

- 1. Band theory of solids
- 2. Semiconductors, dielectrics and ferroelectrics
- 3. Magnetism and superconductors

Course Outcomes (CO)

	CO1	Gain knowledge on band theory of solids
	CO2	Understand semiconductors and hall effect
K1 to K5	CO3	Acquire knowledge on superconductors
	CO4	Gain knowledge on dielectrics and ferroelectric materials
	CO5	Acquire knowledge on magnetism

Programme: 03		M.Sc. Physics			
Title of the Paper		Core Paper 10 - Problems in Physics II			
Batch 2025-2026	Semester 4	Hours/Week 5	Total Hours 75	Credits 4	Skill Development

Course Objectives

To enable the learners to

- 1. Acquire knowledge and skills to solve problem through the concept behind physics
- 2. Apply creative thinking techniques towards realistic problem
- 3. Visualize the basic concepts clearly

Course outcomes (CO)

	CO1	Understand and solve problems in classical mechanics
	CO2	Gain knowledge to solve problems in quantum mechanics
K1 to K5	CO3	Acquire knowledge to solve problems in electromagnetics
	CO4	Understand and solve problems in electronics
	CO5	solve problems in thermodynamics and statistical Physics

Programme: 03			M.Sc. I	Physics	
Title of the Paper		Core Paper 11 - Atomic and Molecular Spectroscopy			ular Spectroscopy
Batch 2025-2026	Semester 4	Hours/Week 5	Total Hours 75	Credits 4	Skill Development

Course Objectives

To enable the learners to

- 1. Understand atomic, microwave and IR spectroscopy
- 2. Know about Raman, NMR and NQR spectroscopy
- 3. Know about ESR and Mossbauer spectroscopy

Course Outcomes (CO)

	CO1	Understand atomic spectroscopy
	CO2	Gain knowledge on microwave and IR spectroscopy
K1 to K5	CO3	Acquire knowledge on Raman spectroscopy
	CO4	Understand NMR and NQR spectroscopy
	CO5	Acquire knowledge on ESR and Mossbauer spectroscopy

Programme: 03			M.Sc. I	Physics	
Title of the Paper		Core Paper 12 - Nuclear and Particle Physics			rticle Physics
Batch 2025-2026	Semester 4	Hours/Week 5	Total Hours 75	Credits 4	Skill Development

Course Objectives

To enable the learners to

- 1. Know about radioactivity
- 2. Gain knowledge on Alpha and Beta particles and Gamma rays
- 3. Understand nuclear models and particle Physics

Course Outcomes (CO)

	CO1	Study the phenomenon of radioactivity
	CO2	Understand Alpha and Beta particles and Gamma rays
K1 to K5	CO3	Gain knowledge on nuclear properties
	CO4	Acquire knowledge on nuclear models
	CO5	Gain knowledge on elementary particles

Program	nme: 03	M.Sc. Physics			
Title of th	ne Paper	Core Practical 1 – General Experiments			
Batch	Semesters	Hours/Week	Total Hours	Credits	Skill Development
2025-2026	1 & 2	5	150	5	

Course Objectives

To enable the learners to

- 1. Perform experiments in the field of general Physics
- 2. Explain physical phenomena and enable to relate physical laws and their applications
- 3. Apply standard techniques and analyze the experimental results and output.

Course outcomes (CO)

	CO1	Have a foundation in fundamentals and applications of general Physics
	CO2	Design, carry out record and analyze experimental data.
K3 to K5	CO3	Get hands on experiences in conducting laboratory experiments.
	CO4	Understand the relationship between theory and experimental results.
	CO5	Practice record keeping of experimental work and data graphing.

Programmo	e Code: 03	M.Sc. Physics			
Title of th	ne Paper	Core Pr	actical 2 – Ele	ctronics	Experiments
Batch 2025-2026	Semesters 1 & 2	Hours/Week 5	Total Hours 150	Credits 4	Skill Development

Course Objectives

To enable the learners to

- 1. Design and construct electronic circuits
- 2. Develop experimental skills and understand relation between experimental data and theoretical analysis.
- 3. Have a foundation in the fundamentals and applications of experimental Physics.

Course outcomes (CO)

Off Successi	ur comp	pletion of the course, the students will be able to
	CO1	Acquire a basic knowledge in solid state electronics
	CO2	Analyse and design analog electronic circuits using discrete components.
K3 to K5	CO3	Observe the amplitude / frequency response of amplifiers.
INS to INS		Take measurements to compare experimental results in the laboratory with
		the theoretical analysis.
	CO5	Practice record keeping of experimental work and data graphing.
1		

Program	nme: 03	M.Sc. Physics				
Title of th	ne Paper	Core Pi	Core Practical 3 – Advanced Experiments			
Batch 2025-2026	Semesters 3 & 4	Hours/Week 5	Total Hours 150	Credits 5	Skill Development	

Course Objectives

To enable the learners to

- 1. Perform experiments in the field of advanced Physics and interpret the results.
- 2. Explain physical phenomena and enable to estimate various related parameters and to analyze them.
- 3. Apply the experimental techniques to research level.

Course outcomes (CO)

	CO1 Gain fundamental knowledge on applications of advanced Physics.	
	CO2 Understand the relationship between theory and experiments	
K3 to K5	CO3 Get hands on experiences in conducting scientific investigations	
	Acquire hands on experiences in conducting laboratory experiments.	
	CO5 Recording and analyzing experimental data.	

Sub. Code: 24PPH4CO

Progran	nme: 03	M.Sc. Physics				
Title of th	ne Paper	Core Practical 4 – Special Electronics Experiments				
Batch 2025-2026	Semesters 3 & 4	Hours/Week 5	Total Hours 150	Credits 4	Skill Development	

Course Objectives

To enable the learners to

- 1. Design and construct special electronic circuits
- 2. Develop experimental skills and understand relation between experimental data and theoretical analysis.
- 3. Have a foundation in the fundamentals and applications of experimental Physics.

Course outcomes (CO)

		1
	CO1	Acquire knowledge in solid state electronics
	CO2	Develop the ability to construct electronic circuits using discrete components.
K3 to K5	CO3	Acquire knowledge to construct Op. amp based circuits
	CO4	Acquire knowledge to construct microprocessor based circuits
	CO5	Understand the relation between theory and experiments

Progran	nme: 03	M.Sc. Physics				
Title of the Paper		Project and Viva Voce				
Batch 2025-2026	Semester 4	Hours/Week 1	Total Hours 15	Credits 4	Skill Development	

Course objectives

To enable the learners to

- 1. Have foundations in the fundamentals of Physics and related area.
- 2. Acquire skills to develop a working model
- 3. Visualize the applications of theoretical concepts

Course Outcomes (CO)

	CO1	Construct working models
	CO2	Gain expertise to present the idea systematically through PPT
K3 to K5	CO3	Get familiarized to develop a report on the project work
	CO4	Accomplish the result accumulation and data graphing
	CO5	Gain expertise to apply knowledge on multiciliary field

Progra	mme: 03	M.Sc. Physics			
Title of	the Paper	Major Elective Paper –			
		Thin Film Physics, Plasma Physics and Crystal Growth			
Batch	Hours/Week	Total Hours	Credits	Entrepreneurship	
2025-2026	5	75	5	-	

To enable the learners to

- 1. Understand the preparation and characterization of thin films
- 2. Understand the fundamentals of plasma Physics
- 3. Acquire knowledge about crystal growth techniques

Course outcomes (CO)

	CO1	Understand the principles, advantages and disadvantages of different thin film deposition methods
17.1 / 17.5	CO2	Understand the growth mechanism of thin films
K1 to K5	CO3	Understand the fundamentals of plasma
		Can distinguish single particle approach and fluid approach
	CO5	Understand different crystal growth techniques

Programme: 03		M.Sc. Physics			
Title of the Paper		Major Elective Paper - Communication Physics			
Batch 2025-2026	Hours/Week 5	Total Hours 75	Credits 5	Entrepreneurship	

Course Objectives

To enable the learners to

- 1. Understand various modulation and detection techniques
- 2. Acquire knowledge about antennas and wave propagation
- 3. Understand generation and propagation of microwaves

Course Outcomes (CO)

	CO1	Understand the concept of modulation and demodulation
	CO2	Understand the principle of antennas and wave propagation
K1 to K5	CO3	Knowledge on television and satellite communication
	CO4	Acquire knowledge on communication electronics
	CO5	Understand microwave generation

Programme code : 03	M.Sc. Physics			
Title of the Paper	Major Elective Paper – Problems in Physics I			
Batch 2025-2026	Hours/Week 5	Total Hours 75	Credits 5	Skill Development

To enable the learners to

- 1. Acquire knowledge and skills to solve problem through the concept behind physics
- 2. Apply creative thinking techniques towards realistic problem
- 3. Visualize the basic concepts clearly

Course Outcomes (CO)

	CO1	Understand and solve problems in mathematical methods in physics
	CO2	Understand and solve problems in experimental techniques and data
****		analysis
K1 to K5	CO3	Understand and solve problems in atomic and molecular physics
	CO4	Understand and solve problems in condensed matter physics
	CO 5	Understand and solve problems in nuclear and particle physics

Programme code : 03	M.Sc. Physics			
Title of the Paper	Major Elective Paper – Semiconductor Devices			
Batch	Hours/Week	Total Hours	Credits	Employability
2025-2026	5	75	5	

To enable the learners to

- 1. Impart knowledge on application of semiconducting materials
- 2. Understand the photolithography and etching processes
- 3. Impart knowledge on IC manufacturing

Course Outcomes (CO)

	CO1	Understand silicon oxidation process
	CO2 Understand photolithography	
K1 to K5	CO3	Gain knowledge on different etching processes
	CO4	Know about ion implantation
	CO 5	Acquire knowledge on production of ICs

Programme: 03		M.Sc. Physics		
Title of the Paper		Major Elective Paper - Energy Physics		
Batch 2025-2026	Hours/Week 5	Total Hours 75	Credits 5	Entrepreneurship

To enable the learners to

- 1. Know about Solar thermal and photovoltaic energy
- 2. Understand hydrogen energy, wind energy and ocean thermal energy
- 3. Understand energy auditing and carbon credits.

Course Outcomes (CO)

		· · · · · · · · · · · · · · · · · · ·
	CO1	Understand Solar thermal energy
	CO2	Gain knowledge on solar photovoltaic energy
K1 to K5	CO3	Understand wind and ocean thermal energy
	CO4	Know about Hydrogen energy and Fuel cells
	CO5	Understand energy auditing and carbon credits

Programme code : 03	M.Sc. Physics			
Title of the Paper	Major Elective Paper – Photovoltaic Science			ltaic Science
Batch 2025-2026	Hours/Week 5	Total Hours 75	Credits 5	Entrepreneurship

Course Objectives

To enable the learners to

- 1. Understand the science behind photovoltaics
- 2. Understand he classification of solar cells
- 3. Understand the characterization of silicon and dye sensitized solar cells

Course Outcomes (CO)

	CO1	Explain Photovoltaic and solar cell
	CO2 Understand the basics about semiconductors	
K1 to K5	CO3	Classify amorphous silicon solar cell
KI to KS	CO4	Know about construction and working of solar cells and Thin film fabrication methods.
	CO 5	Know about preparation and mechanism of dye sensitized solar cell.

Programme code: 03	M.Sc. Physics			
Title of the Paper	Major Elective Paper – Artificial Intelligence in Physics			gence in Physics
Batch	Hours/Week	Total Hours	Credits	Cl-:11 Davidanmant
2025-2026	5	75	5	Skill Development

To enable the learners to know about the

- 1. Mechanics of Machine learning
- 2. Algorithms and Statistical Model
- 3. AI for Particle Physics, Cosmology and Condensed Matter Physics.

Course outcomes (CO)

	CO1	Know about Machine Learning Physics
	CO2	n knowledge about Algorithms and Statistical Model
K1 to K5	CO3	Acquire knowledge about AI for Particle Physics
	CO4	Acquire knowledge about AI for Cosmology
	CO5	Acquire knowledge about AI for Condensed Matter Physics

Programme code: 03		M.Sc. Physics			
Title of t	he Paper	Major Elective Paper - Computational Methods and Programming			
Batch 2025-2026	Semester 1/2	Hours/Week 5	Total Hours 75	Credits 5	Employability

Course Objectives

To enable the learners to

- 1. Understanding zeros of linear & simultaneous equations, curve fitting, interpolating methods.
- 2. Understanding finding eigenvalues, integration of functions, ordinary and partial differential equations.
- 3. Writing programs using python for the numerical methods.

Course Outcomes (CO)

OH BUCCEBBIU	i successful completion of the course, the students will be uble to				
	CO1	Find roots of different types of equations			
	CO2	Understand experimental data, its behavior, various interpolating techniques			
	CO3	Obtain the eigenvalues of matrices and understand techniques to evaluate			
K1 to K5	CO3	integrals.			
	CO4	Solve initial value and boundary value problems of ordinary and partial			
		differentials - applicability in physics			
		Exposure to write scientific programming using python and apply for various			
	CO3	techniques studied			

Programme: 03	M.Sc. Physics				
Title of the Paper		Non Major E	lective Pap	oer –	
	Nano	technology : Prin	ciples and	Applications	
Batch	Hours/Week	Total Hours	Credits	Entrepreneurship	
2025-2026	4	60	4	_ _	

Course Objectives

To enable the learners to

- 1. Understand the concepts in nanomaterials
- 2. know about different synthesis processes of nanomaterials
- 3. know about characterization techniques and applications of nanomaterials

Course Outcomes (CO)

	CO1	Understand the concepts in nanomaterials
	CO2	Know the synthesis methods of 0-D, 1-D, 2-D and 3-D nanomaterials
K1 to K5	CO3	Know the various characterization methods
	CO4	Gain knowledge on properties of nanomaterials
	CO5	Understand the applications of nanomaterials

Programme code: 03	M.Sc. Physics				
Title of the Paper	Non Major Elective Paper - Intellectual Property Rights				
Batch	Hours/Week	Total Hours	Credits	Entrepreneurship	
2025-2026	4	60	4		

Course Objectives

To enable the learners to

- 1. Understand the aspects of Intellectual Property Rights
- 2. Know about Patents, Copyrights, Trademarks and Registration aspects
- 3. Know about Design and Geographical Indication of IPR

Course outcomes (CO)

	CO1	Acquire knowledge about Intellectual Property Rights
	CO2	Understand about patents and patent registration
K1 to K5	CO3	Acquire knowledge on copyrights and registration
KI to KS	CO4	Gain knowledge on trademarks and registration
	CO5	Understand the design and geographical indication of IPR

Programme Code: 03		M.Sc.	Physics	
Title of the Paper	Non I	Major Elective Paper - Research Ethics		
Batch	Hours/Week	Total Hours	Credits	Clail Downlammant
2025-2026	4	60	4	Skill Development

Course Objectives

To enable the learners

- 1. To understand the philosophy of science and ethics,
- 2. To know about research integrity and publication ethics.
- 3. To understand indexing, citation databases and the usage of plagiarism tools.
- 4. At the end of the course the student will have awareness about the publication ethics and publication misconducts

Course Outcomes (CO)

	CO1	Understand the philosophy of science and ethics, research integrity and publication ethics
	CO2	Identify research misconduct and predatory publications
K1 -	CO3	Know about indexing and citation databases, open access publications, research metrics
K5		(citations, h-index, impact Factor, etc.)
	CO4	Understand the usage of plagiarism tools
	CO5	Gain knowledge on the publication ethics and publication misconducts

Sub.Code: 25PGI4N2

Programme	Code: 03	M.Sc Physics			
Title of the Paper		Non-Major Elective Paper: Information Security			
Batch 2025-2026	Semester 4	Hours/Week 4	Total Hours 60	Credits 4	Skill Development

Course Objectives

To enable the learners to

- 1. identify the core concepts of Information security.
- 2. examine the concepts of Information Security.
- 3. design and implement the security features for IT and Industrial sectors.

Course Outcomes (CO)

	CO1	Learn the principles and fundamentals of information security.
	CO2	Demonstrate the knowledge of Information security concepts
K1 – K5	CO3	Understand about Information Security Architecture.
	CO4	Analyze the various streams of security in IT and Industrial sector.
	CO5	Know about Cyber Laws and Regulations.

Programme: 03		M.Sc. Physics			
Title of the Paper		Extra Departmental Course (EDC) -Biomedical Instrumentation			
Batch 2025-2026	Semester 3	Hours/Week 2	Total Hours 30	Credits 2	Employability

Course Objective

To enable the learners to

- 1. Gain knowledge on bioelectric signals and transducers
- 2. Understand blood gas analyzers, pulmonary function analyzers and Oximeters
- 3. Understand the modern imaging systems and electrical safety

Course outcome (CO)

	CO1 Gain knowledge on bioelectric signals and transducers					
K1 to K5	CO2	Understand Blood gas analyzers, pulmonary function analyzers and Oximeters				
	CO3	Acquire knowledge on blood cell counters and audiometer				
	CO4	Acquire knowledge on bio-medical recorders				
	CO5	Gain knowledge on modern imaging systems and electrical safety				

Programme: 03	M.Sc. Physics
Title of the Paper	ALC - Advanced Experimental Techniques
Batch	2025-2026
Extra Credits	2

Course Objective

To enable the learners to

- 1. Understand different types of structural and surface morphological and spectroscopic characterization techniques
- 2. Gain knowledge about magnetic techniques
- 3. Understand thermal analytical techniques

Course outcome (CO)

	CO1	Gain knowledge on structural characterization
	CO2	Acquire knowledge on spectroscopic analysis
K1 to K5	CO3	Gain knowledge on morphological techniques
	CO4	Acquire knowledge on magnetic properties of materials
	CO5	Gain knowledge on thermal analytical techniques

Programme c	ode: 03	P	G Diploma in P	article Acce	lerator
Title of the Paper			Core Paper 1 -	Nuclear Ph	ysics
Batch	Semester	Hours/Week	Total Hours 30	Credits	Employability
2025-2026 1		2		2	

Course Objectives

To enable the learners to know about the

- 1. Basic properties of nucleus.
- 2. Various nuclear forces, nuclear models and nuclear reaction.
- 3. Different types of nuclear detectors.

Course outcomes (CO)

1		,
CO1 Know about basic properties of nucleus.		Know about basic properties of nucleus.
	CO2	Gain knowledge about nuclear forces.
K1 to K5	CO3	Acquire knowledge about nuclear models.
	CO4	Know about nuclear reactions.
	CO5	Understand the working of various nuclear detectors.

Programme	code : 03	PG Diploma in Particle Accelerator			
Title of the I	Paper		Core Paper 2 – I	Radioactivit	y
Batch	Semester	Hours/Week	Total Hours	Credits	Employability
2025-2026	1	2	30	2	

Course Objectives

To enable the learners to know about the

- 1. Basics of radioactivity and its types.
- 2. Characteristics of alpha (α), beta (β) and gamma (γ) rays.
- 3. Fundamental laws of radioactivity.

Course outcomes (CO)

	Mnow about basics of radioactivity and its types.	C O1 K	
	O2 Gain knowledge about alpha rays.	C O2 G	
K1 to K5	Acquire knowledge about beta rays.	C O3 A	
	O4 Know about gamma rays.	C O4 K	
	Understand the fundamentals laws of radioactivity.	C O5 U	

Programm	ne code : 03	P(PG Diploma in Particle Accelerator			
Title of the Paper		Core P	Paper 3 – Charged	Particle Inte	eraction	
Batch	Semester	Hours/Week	Total Hours 30	Credits	Employability	
2025-2026		2		2		

Course objective

To enable the learners to know about the

- 1. Basics of particle interaction.
- 2. Interaction of electromagnetic waves with matter.
- 3. Pair production.

Course outcomes (CO)

K1 to K5	CO1	Know about basics of particle interaction.
		Gain knowledge about interaction of electromagnetic waves with matter.
	CO3	Acquire knowledge about photoelectric effect.
	CO4	Know about Compton effect.
	CO5	Understand pair production.

Programme c	ode: 03	P	G Diploma in P	article Acce	lerator
Title of the Paper		Core Pape	er 4 – Physics of	Basic Parti	cle Accelerators
Batch 2025-2026	Semester 2	Hours/Week 2	Total Hours 30	Credits 2	Employability

Course Objective

To enable the learners to know about the

- 1. Importance of particle accelerators.
- 2. Various types of accelerators and their applications.
- 3. Working principles, limitations and applications of Cyclotron, Betatron, Synchrotron and Microtron.

Course outcomes (CO)

	CO1	Know about particle accelerators and its types.
	CO2	Gain knowledge about RF linear accelerator.
K1 to K5	CO3	Acquire knowledge about linear accelerator designs and set up.
	CO4	Know about Cyclotron and Betatron.
	CO5	Understand Synchrotron and Microtron.

Programme co	de: 03	PG I	Diploma in Particle	Accelerat	tor
Title of the Pa	per	Core Paper 5 –	Physics of Advance	ed Particle	Accelerators
Batch	Semester	Hours/Week	Total Hours	Credits	Employability
2025-2026 2		2	30	2	

Course Objective

To enable the learners to know about the

- 1. Charged particle dynamics.
- 2. Importance of advanced particle accelerators.
- 3. Various types of advanced accelerators and their applications.

Course outcomes (CO)

	CO1	Know about charged particle dynamics.
	CO2	Gain knowledge about RIB accelerator science.
K1 to K5	CO3	Acquire knowledge about ion source for particle accelerators.
	CO4	Know about synchrotron radiation.
	CO5	Understand advance accelerators.

Programme code : 03		PG Diploma in Particle Accelerator			
Title of the Paper		Core Paper 6 – Elementary Particles			
Batch	Semester	Hours/Week	Total Hours	Credits	Employability
2025-2026	2	2	30	2	

Course Objectives

To enable the learners to know about the

- 1. Fundamental interaction of elementary particles.
- 2. Various conservation laws of elementary particles.
- 3. Production and properties of various elementary particles.

Course outcomes (CO)

K1 to K5	CO1	Know about fundamental interaction of elementary particles.	
	CO2	Gain knowledge about various conservation laws.	
	CO3	Acquire knowledge on production and properties of elementary particles.	
	CO4	Know about mesons and its properties.	
	CO5	Understand quarks and its properties.	

Programme: 03		M.Sc. Physics			
Title of the Paper		Project and Viva Voce			
Batch 2025-2026	Semester 2	Hours/Week 2	Total Hours 30	Credits 2	Skill Development

Course objectives

To enable the learners to

- 1. Have foundations in the fundamentals of Particle accelerators.
- 2. Acquire knowledge on elementary particles
- 3. Understand the applications of radioactive materials

Course Outcomes (CO)

	CO1	Construct working models
	CO2	Gain expertise to present the idea systematically through PPT
K3 to K5	CO3	Get familiarized to develop a report on the project work
	CO4	Accomplish the result accumulation and data graphing
	CO5	Gain expertise to apply knowledge on multidisciplinary field