KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS) COIMBATORE - 641029

DEPARTMENT OF PHYSICS (PG)

Course Outcome (2023-2024)

PPH

Sub. Code: 23PPH101

Programn	ne code : 03	M.Sc. Physics		
Title of the Paper		Core Paper 1 – Classical Mechanics		echanics
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024	1	5	75	4

Course Objectives

To enable the learners to know about the

- 1. Mechanics of single and system of particle
- 2. Generalized coordinates, Lagrangian formulation and mechanics of rigid body motion
- 3. Hamiltonian formulation of mechanics, Hamilton-Jacobi theory, harmonic oscillator problem, theory and applications of small oscillations.

Course outcomes (CO)

	CO1	Know about Newtonian mechanics
	CO2	Gain knowledge about Lagrangian formulation
K1 to K5	CO3	Acquire knowledge about mechanics of rigid body motion.
	CO4	Know about Hamiltonian formulation
CO5 Understand Hamilton-Jacobi theory and small		Understand Hamilton-Jacobi theory and small oscillations

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Paper 2 - Mathematical Physics		
Batch 2023-2024	Semester 1	Hours/Week 5	Total Hours 75	Credits 4

Course Objectives

To enable the learners to

- 1. Understand complex variables, group theory & tensors
- 2. Know about types of differential equations in Physics
- 3. Study about numerical methods

Course Outcomes (CO)

	CO1	Understanding of complex analysis including important theorems and determination of residues to evaluate definite integrals		
K1 to K5	CO2 Solve partial differential equations and be familiar with special functions such as Bessel, Legendre and Hermite			
K1 10 K5	CO3	Have knowledge in abstract group theory and tensors		
	CO4	Understand partial differential equations in Physics		
	CO5	Apply numerical methods to obtain appropriate solutions to mathematical problems		

Programn	ne code : 03	M.Sc. Physics		
Title of the Paper		Core Paper 3 – Condensed Matter Physics I		ter Physics I
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024	1	5	75	4

Course Objectives

To enable the learners to

- 1. Understand the crystal system of materials
- 2. Know about crystal imperfection and lattice vibrations
- 3. Study about lattice and electronic specific heat

Course Outcomes (CO)

	CO1	Understand the crystal structure and reciprocal lattice	
	CO2	Understand the crystal structure by XRD	
K1 to K5	CO3	Gain knowledge about crystal imperfection	
CO4 Acquire knowledge on lattice vibrations and thermal properties		Acquire knowledge on lattice vibrations and thermal properties	
	CO5	Acquire knowledge about lattice and electronic specific heat	

Programn	ne code : 03	M.Sc. Physics		
Title of the Paper		Core Paper 4 – Quantum Mechanics I		chanics I
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024	2	5	75	4

Course Objectives

Enable the learners to

- 1. Gain knowledge on General formalism of quantum mechanics
- 2. Gain knowledge on energy Eigenvalue problems, angular momentum and approximation methods
- 3. Understand time dependent, time independent and perturbation theories.

Course Outcomes (CO)

	CO1	Knowledge on General formalism of quantum mechanics
	CO2	Knowledge on one and three dimensional energy Eigenvalue problems
	CO3	Knowledge on energy angular momentum
K1 to K5		Acquire knowledge on time independent quantum approximation Methods
СО		Understand time dependent perturbation theory and semi-classical
	003	treatment of radiation

Programme code: 03		M.Sc. Physics		
Title of the Paper		Core Paper 5 - Thermodynamics and Statistical Mechanics		
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024	2	5	75	4

Course Objectives

To enable the learner to know about

- 1. Thermodynamics and ensembles
- 2. Classical distribution law and quantum statistics
- 3. Application of quantum statistics.

Course Outcomes (CO)

	CO1	Know about thermodynamics and radiations
	CO2	Acquire knowledge on ensembles
K1 to K5	CO3	Get knowledge about classical distribution law
	CO4	Get knowledge about quantum statistics
	CO5	Understand applications of quantum statistics

	Programm	ne code: 03	M.Sc. Physics		
	Title of the Paper		Core Paper-6		
			Thin Film Physics, Plasma Physics and Crystal Growth		
	Batch	Semester	Hours/Week	Total Hours	Credits
	2023-2024	2	5	75	4

Course Objectives

To enable the learners to

- 1. Understand the preparation and characterization of thin films
- 2. Understand the fundamentals of plasma Physics
- 3. Acquire knowledge about crystal growth techniques

Course outcomes (CO)

	CO1	Understand the principles, advantages and disadvantages of different thin film deposition methods
T71 4 T75	CO2	Understand the growth mechanism of thin films
K1 to K5	CO3	Understand the fundamentals of plasma
	CO4	Can distinguish single particle approach and fluid approach
	CO5	Understand different crystal growth techniques

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 7 - Quantum Mechanics II		chanics II
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024	3	5	75	4

Course Objectives

To enable the learners to

- 1. Understand the basic approximate methods in molecular quantum mechanics
- 2. Understand relativistic quantum theory, quantum optics
- 3. Understand quantization of fields and scattering

Course Outcomes (CO)

	CO1	Understand different approximations and models to describe a many electron system
K1 to K5	CO2	Comparison of MO and VB theories to explain molecular structure of hydrogen molecule and hydrogen ion
	CO3	Understand relativistic quantum mechanics
	CO4 Acquire knowledge on quantum field theory	
	CO5 Interpret scattering theory in terms of quantum aspects.	

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 8 –		
		Electromagnetic Theory and Electrodynamics		ctrodynamics
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024	2023-2024 3		75	4

Course Objectives

To know about

- 1. Electrostatics and magnetostatics
- 2. Applications of Maxwell's equations
- 3. Antenna arrays

Course Outcomes (CO)

	CO1 Understand electrostatics and magnetostatics CO2 Acquire knowledge on field equations and conservation laws		
K1 to K5	CO3	Understand the propagation of electromagnetic waves in different media on microscopic scale	
	CO4 Study the interaction of electromagnetic waves with different m		
	on macroscopic scale		
	CO5	Acquire knowledge on relativistic electrodynamics	

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 9 – Condensed Matter Physics II		er Physics II
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024	3	4	60	4

Course Objectives

To gain knowledge about

- 1. Band theory of solids
- 2. Semiconductors, dielectrics and ferroelectrics
- 3. Magnetism and superconductors

Course Outcomes (CO)

	CO1 Knowledge on band theory of solids		
	CO2 Understand semiconductors		
K1 to K5	CO3	O3 Acquire knowledge on superconductors	
	CO4 Gain knowledge on dielectrics and ferroelectric materials		
	CO5	Acquire knowledge on magnetism	

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 10 - Problems in Physics II		
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024			75	4

Course Objectives

To enable the learners to

- 1. Acquire knowledge and skills to solve problem through the concept behind physics
- 2. Apply creative thinking techniques towards realistic problem
- 3. Visualize the basic concepts clearly

Course outcomes (CO)

	CO1	Understand and solve problems in classical mechanics
	CO2	Understand and solve problems in quantum mechanics
K1 to K5	CO3	Understand and solve problems in electromagnetics
	CO4	Understand and solve problems in electronics
	CO5	Understand and solve problems in thermodynamics and statistical Physics

Programme: 03		M.Sc. Physics		
Title of the Paper		Core Paper 11 - Atomic and Molecular Spectroscopy		Spectroscopy
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024	4	5	75	4

Course Objectives

To enable the learners to

- 1. Understand atomic, microwave and IR spectroscopy
- 2. Know about Raman, NMR and NQR spectroscopy
- 3. Know about ESR and Mossbauer spectroscopy

Course Outcomes (CO)

	CO1 Understand atomic spectroscopy CO2 Gain knowledge on microwave and IR spectroscopy		
T74 4 T75			
K1 to K5	CO3	Acquire knowledge on Raman spectroscopy	
CO4 Understand NMR and NQR spectroscopy		Understand NMR and NQR spectroscopy	
	CO5	Acquire knowledge on ESR and Mossbauer spectroscopy	

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Paper 12 - Nuclear and Particle Physics		rticle Physics
Batch	Semester	Hours/Week	Total Hours	Credits
2023-2024	4	5	75	4

Course Objectives

To enable the learners to

- 1. Know about radioactivity
- 2. Gain knowledge on Alpha and Beta particles and Gamma rays
- 3. Understand nuclear models and particle Physics

Course Outcomes (CO)

CO1 Study the phenomenon of radioactivity		Study the phenomenon of radioactivity	
	CO2	O2 Understand Alpha and Beta particles and Gamma rays	
K1 to K5	CO3	CO3 Gain knowledge on nuclear properties	
	CO4 Acquire knowledge on nuclear models		
	CO5	Gain knowledge on elementary particles	

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Practical 1 – General Experiments		
Batch Semesters		Hours/Week	Total Hours	Credits
2023-2024	1 & 2	5	150	5

Course Objectives

To enable the learners to

- 1. Perform experiments in the field of general Physics
- 2. Explain physical phenomena and enable to relate physical laws and their applications
- 3. Apply standard techniques and analyze the experimental results and output.

Course outcomes (CO)

On successful completion of the course, the students will be able to

	CO1	Have a foundation in fundamentals and applications of general Physics
	CO2	Able to design, carry out record and analyze experimental data.
K3,K4,K5	CO3	Provide hands on experiences in conducting laboratory experiments.
	CO4	Understand the relationship between theory and experimental results.
	CO5	Practice record keeping of experimental work and data graphing.

Sub. Code: 23PPH2CM

Programme code : 03		M.Sc. Physics		
Title of the Paper		Core Practical 2 – Electronics Experiments		
Batch	Batch Semesters		Total Hours	Credits
2023-2024	1 & 2	5	150	4

To enable the learners to

- 1. Design and construct electronic circuits
- 2. Develop experimental skills and understand relation between experimental data and theoretical analysis.
- 3. Have a foundation in the fundamentals and applications of experimental Physics.

Course outcomes (CO)

On successful completion of the course, the students will be able to

	CO1	Acquire a basic knowledge in solid state electronics
	CO2	Analyse and design analog electronic circuits using discrete components.
K3,K4,K5	CO3	Observe the amplitude / frequency response of amplifiers.
, ,	CO4	Take measurements to compare experimental results in the laboratory with the theoretical analysis.
	CO5	Practice record keeping of experimental work and data graphing.

Sub. Code: 23PPH4CN

PPH

Title of t	the Paper	Core Practical 3 – Advanced Experiments		
Batch	Batch Semesters		Total Hours	Credits
2023-2024	3 & 4	5	150	5

Course Objectives

To enable the learners to

- 1. Perform experiments in the field of advanced Physics and interpret the results.
- 2. Explain physical phenomena and enable to estimate various related parameters and to analyze them.
- 3. Apply the experimental techniques to research level.

Course outcomes (CO)

	CO1	Gain fundamental knowledge on applications of advanced Physics.
	CO2	Understand the relationship between theory and experiments
K3,K4,K5	CO3	Provide hands on experiences in conducting scientific investigations
	CO4	Provide hands on experiences in conducting laboratory experiments.
	CO5	Recording and analyzing experimental data.

Prograi	mme: 03	M.Sc. Physics		
Title of the Paper		Core Practical 4 – Special Electronics Experiments		
Batch	Batch Semesters		Total Hours	Credits
2023-2024	3 & 4	5	150	4

Course Objectives

To enable the learners to

- 1. Design and construct special electronic circuits
- 2. Develop experimental skills and understand relation between experimental data and theoretical analysis.
- 3. Have a foundation in the fundamentals and applications of experimental Physics.

Course outcomes (CO)

	CO1	Acquire knowledge in solid state electronics
	CO2	Develop the ability to construct electronic circuits using discrete
K3,K4,K5	CO3	Acquire knowledge to construct Op. amp based circuits
	CO4	Acquire knowledge to construct microprocessor based circuits
	CO5	Understand the relation between theory and experiments

Programme: 03		M.Sc. Physics		
Title of the Paper		Project and Viva Voce		
Batch Semester		Hours/Week	Total Hours	Credits
2023-2024	2023-2024 4		-	4

Course objectives

To enable the learners to

- 1. Have foundations in the fundamentals of Physics and related area.
- 2. Acquire skills to develop a working model
- 3. Visualize the applications of theoretical concepts

Course Outcomes (CO)

iui compiction	ii Oi tiic	course, the students will be usic to	
	CO1	Construct working models	
	CO2	Gain expertise to present the idea systematically through PPT	
K3 to K5	CO3 Get familiarized to develop a report on the project work		
	CO4	Accomplish the result accumulation and data graphing	
	CO5	Gain expertise to apply knowledge on multiciliary field	

Programme code : 03 M.Sc. Physics			
Title of the Paper	Major Elective Paper - Electronics and Micro		Microprocessor
Batch	Hours/Week	Total Hours	Credits
2023-2024	5	75	5

To enable the learners to

- 1. Know about power electronics, operational amplifiers and non-linear integrated circuits
- 2. Understand architecture of microprocessors
- 3. Know about peripheral devices, interfacing and data acquisition systems.

Course Outcomes (CO)

decession completion of the course, the students will be use to					
CO1 Understand power electronics					
K1 to K5	CO2 Gain knowledge on operational amplifiers and non-linear integrated circuits				
	CO3 Understand architecture of microprocessors				
	CO4	Know about peripheral devices and interfacing			
	CO5	Know about data acquisition systems			

Programme: 03	M.Sc. Physics		
Title of the Paper	Major Elective Paper - Communication Physics		
Batch	Hours/Week	Total Hours	Credits
2023-2024	5	75	5

To enable the learners to

- 1. Understand various modulation and detection techniques
- 2. Acquire knowledge about antennas and wave propagation
- 3. Understand generation and propagation of microwaves
- 4. Acquire knowledge on radar and communication electronics

Course Outcomes (CO)

	CO1	Understand the concept of modulation and demodulation			
	CO2 Understand the principle of antennas and wave propagation				
K1 to K5	CO3	Knowledge on television and radar Acquire knowledge on communication electronics			
	CO4				
	CO5	Understand microwave generation			

PPH

Programme code : 03	M.Sc. Physics		
Title of the Paper	Major Elective Paper - Energy Physics		
Batch	Hours/Week	Total Hours	Credits
2023-2024	5	75	5

Course Objectives

To enable the learners to

- 1. Know about Solar thermal and photovoltaic energy
- 2. Understand hydrogen energy, wind energy and ocean thermal energy
- 3. Understand energy auditing and carbon credits.

Course Outcomes (CO)

	1	,			
CO1 Understand Solar thermal energy					
	CO2 Gain knowledge on solar photovoltaic energy				
K1 to K5	CO3 Understand wind and ocean thermal energy				
	CO4	Know about Hydrogen energy and Fuel cells			
	CO5	Understand energy auditing and carbon credits			

Programme code : 03	M.Sc. Physics		
Title of the Paper	Major Elective Paper - Industrial Physics		
Batch	Hours/Week	Total Hours	Credits
2023-2024	5	75	5

To enable the learners to

- 1. Understand power electronic devices
- 2. Understand voltage regulators, switching and counting circuits
- 3. Understand industrial heating system and production of vaccum

Course Outcomes (CO)

	7 T				
	Understand power electronic devices				
**** * ***	CO2 Understand voltage regulators				
K1 to K5	CO3 Gain knowledge on switching and counting circuits				
	CO4 Know about industrial heating system				
	CO 5	Acquire knowledge on production of vacuum			

Programme code: 03	M.Sc. Physics		
Title of the Paper	Major Elective Paper – Problems in Physics I		
Batch	Hours/Week	Total Hours	Credits
2023-2024	5	75	5

To enable the learners to

- 1. Acquire knowledge and skills to solve problem through the concept behind physics
- 2. Apply creative thinking techniques towards realistic problem
- 3. Visualize the basic concepts clearly

Course Outcomes (CO)

	CO1	Understand and solve problems in mathematical methods in physics	
K1 to K5	Understand and solve problems in experimental techniques and data analysis		
	CO3 Understand and solve problems in atomic and molecular physical control of the		
	CO4 Understand and solve problems in condensed matter physic		
	CO 5	Understand and solve problems in nuclear and particle physics	

PPH

Programme code : 03	M.Sc. Physics		
Title of the Paper	Major Elective Paper – Semiconductor Devices		
Batch	Hours/Week	Total Hours	Credits
2023-2024	5	75	5

Course Objectives

To enable the learners to

- 1. Impart knowledge on application of semiconducting materials
- 2. Understand the photolithography and etching processes
- 3. Impart knowledge on IC manufacturing

Course Outcomes (CO)

	CO1	Understand silicon oxidation process		
K1 to K5 CO2 Understand photolithography CO3 Gain knowledge on different etching processes		Understand photolithography		
		Gain knowledge on different etching processes		
	Know about ion implantation			
	CO 5	Acquire knowledge on production of ICs		

Programme code : 03 M.Sc. Physics			
Title of the Paper	Major Elective Paper – Photovoltaic Science		
Batch	Hours/Week	Total Hours	Credits
2023-2024	5	75	5

To enable the learners to

- 1. Understand the science behind photovoltaics
- 2. Understand he classification of solar cells
- 3. Understand the characterization of silicon and dye sensitized solar cells

Course Outcomes (CO)

	CO1	Explain Photovoltaic and solar cell	
CO2 Understand the basics about semiconductors		Understand the basics about semiconductors	
K1 to K5	CO3	Classification of amorphous silicon solar cell	
	CO4	Construction and working of solar cells and Thin film fabrication	
		methods.	
	CO 5	Know about preparation and mechanism of dye sensitized solar	
		cell.	

Programme code	: 03	M.Sc. Physics		
Title of the Paper	•	Major Elective Paper – Modern Optics		
Batch Semester		Hours/Week	Total Hours	Credits
2023-2024	1/2	5	75	5

To enable the learners to

- 1. Understanding necessary and sufficient condition for laser
- 2. Understanding basic principles involved in Non-linear optical effects
- 3. Understanding different types of optical fibers and its applications

Course Outcomes (CO)

	CO1	Understand polarization and optics of solids	
TZ1 4. TZ5	CO2 Understand laser action		
K1 to K5	CO3	Gain knowledge about non-linear optics and its applications	
	CO4 Know about construction of optical fibers		
	CO 5	Acquire knowledge on applications of optical fibers	

Programme: 03	M.Sc. Physics		
Title of the Paper	Non Major Elective Paper – Nanotechnology: Principles and Applications		
Batch	Hours/Week	Total Hours	Credits
2023-2024	4	60	4

To enable the learners to

- 1. Understand the concepts in nanomaterials
- 2. know about different synthesis processes of nanomaterials
- 3. know about characterization techniques and applications of nanomaterials

Course Outcomes (CO)

	CO1 Understand the concepts in nanomaterials						
V1 to V5	CO2 Know the synthesis methods of 0-D, 1-D, 2-D and 3-D nanomaterials						
KI to K5	CO3	Know the various characterization methods Solve the various characterization methods					
	CO4 Gain knowledge on properties of nanomaterials						
	CO5	Understand the applications of nanomaterials					

Programme code : 03	M.Sc. Physics		
Title of the Paper	Non Major Elective Paper - Intellectual Property Rights		
Batch	Hours/Week	Total Hours	Credits
2023-2024	4	60	4

To enable the learners to

- 1. Understand the aspects of Intellectual Property Rights
- 2. Know about Patents, Copyrights, Trademarks and Registration aspects
- 3. Know about Design and Geographical Indication of IPR

Course outcomes (CO)

decessing completion of the course, the students will be usic to					
CO1 Acquire knowledge about Intellectual Property Rights					
CO2 Understand about patents and patent registration					
CO3	Acquire knowledge on copyrights and registration				
CO4	O4 Gain knowledge on trademarks and registration				
CO5	Understand the design and geographical indication of IPR				
	CO1 CO2 CO3 CO4				

Programme Code: 03			M.Sc. Physics	
Title of the Paper		Non Major Elective Paper - Research Ethics		Ethics
Batch 2023-2024	Semester 4	Hours/Week 4	Total Hours 60	Credits 4

To enable the learners

- 1. To understand the philosophy of science and ethics,
- 2. To know about research integrity and publication ethics.
- 3. To understand indexing, citation databases and the usage of plagiarism tools.
- 4. At the end of the course the student will have awareness about the publication ethics and publication misconducts

Course Outcomes (CO)

	co1 understand the philosophy of science and ethics, research integral publicationethics				
	CO2 identify research misconduct and predatory publications				
K1 - K5	СОЗ	Know about indexing and citation databases, open access publications, research metrics(citations, h-index, impact Factor, etc.)			
	CO4	Understand the usage of plagiarism tools			
	CO5	Gain knowledge on the publication ethics and publication misconducts			

Subject Code: 23PGI4N2

Programme	Code: 03		M.Sc Physics	
Title of the Paper		Non-Major Elective Paper: Information Security		ation Security
Batch Semester		Hours/Week	Total Hours	Credits
2023-2024	4	4	60	4

Course Objectives

- 1. Students will identify the core concepts of Information security.
- 2. To examine the concepts of Information Security.
- 3. To design and implement the security features for IT and Industrial sectors.

Course Outcomes (CO)

	CO1	To Learn the principles and fundamentals of information security.
	CO2	To Demonstrate the knowledge of Information security concepts
K1 – K5	CO3	To Understand about Information Security Architecture.
	CO4	To Analyze the various streams of security in IT and Industrial sector.
	CO5	To know about Cyber Laws and Regulations.

PPH

Subject Code: 23PPH3X1

Progra	mme: 03		M.Sc. Physics	
Title of the Paper		EDC - Biomedical Instrumentation		
Batch Semester		Hours/Week	Total Hours	Credits
2023-2024	3	2	30	2

Course Objective

To enable the learners to

- 1. Gain knowledge on bioelectric signals and transducers
- 2. Understand blood gas analyzers, pulmonary function analyzers and Oximeters
- 3. Understand the modern imaging systems and electrical safety

Course outcome (CO)

	CO1	Gain knowledge on bioelectric signals and transducers
K1 to K5	CO2	Understand Blood gas analyzers, pulmonary function analyzers and
		Oximeters
	CO3	Acquire knowledge on blood cell counters and audiometer
	CO4	Acquire knowledge on bio-medical recorders
	CO5	Gain knowledge on modern imaging systems and electrical safety

Programme: 03	M.Sc. Physics
Title of the Paper	ALC - Advanced Experimental Techniques
Batch	2023-2024
Extra Credits	2

To enable the learners to

- 1. Understand different types of structural and surface morphological and spectroscopic characterization techniques
- 2. Gain knowledge about magnetic techniques
- 3. Understand thermal analytical techniques

Course outcome (CO)

	CO1	Gain knowledge on structural characterization
K1 to K5	CO2	Acquire knowledge on spectroscopic analysis
		Gain knowledge on morphological techniques
	CO4	Acquire knowledge on magnetic properties of materials
	CO5	Gain knowledge on thermal analytical techniques